Energy Homeostasis of Immune Cells: Translating Cell Bioenergetics into Clinical Application in Rheumatoid Arthritis

Author(s):  
Mauricio Rosas-Ballina
2018 ◽  
Vol 69 (9) ◽  
pp. 2541-2545
Author(s):  
Raluca Barzoi ◽  
Elena Rezus ◽  
Codruta Badescu ◽  
Razan Al Namat ◽  
Manuela Ciocoiu

There is a bidirectional interaction between most immune cells and osteoblasts, osteoclasts and their precursor cells. The receptor activator of nuclear factor-kB ligand (RANKL)/RANK/osteoprotegerin (OPG) system plays an essential role in the formation of osteoblasts, but it also has implications in osteoclast biology and implicitly on the diseases characterized by bone loss. Proinflammatory cytokines existing at synovial level function as direct or indirect stimulators of osteoclast differentiation, but also of its survival or activity, although some cytokines may also play an antiosteocastogenic role. The fate of bone destruction is determined by the balance between osteoclastogenic and antiosteoclastogenic mediators. Our study has shown that the early initiation of the therapy with anti-TNF and anti-IL6 biological agents, in patients with rheumatoid arthritis, inhibits bone destruction, regardless of the anti-inflammatory activity in patients with rheumatoid arthritis.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 213.3-214
Author(s):  
M. Y. Hachim ◽  
S. Hannawi

Background:Coronavirus disease (COVID-19) caused by SARS-COV2 represents an unprecedented global public health concern with a particular burden on patients with chronic diseases and those on immune-modulating drugs. It is especially worrisome to patients with rheumatoid arthritis (RA) who are on immune suppression regimens[1]. On the other side, many reports showed and recommended the use of some Disease-Modifying Drugs commonly used to treat rheumatic diseases like hydroxychloroquine. However, the general understanding of COVID-19 characteristics in this population and the mechanism of action of these drugs in COVID-19 is still unknown[2].Objectives:Explore publicly available transcriptomic dataset of patients infected with SARS-COV2 compared to uninfected to identify differentially expressed genes (DEGs) related to the immune system that might be pathogenic in RA synovium. Then explore the effect of Disease-Modifying Drugs on their local expression that might give hints about their possible mechanism of action.Methods:RNAseq dataset (GSE147507) were retrieved using the Gene Expression Omnibus (GEO) and used to identify DEGs between infected and uninfected lung samples using BioJupies tools [3]. The DEGs were explored for common pathways using Metascape online tool (http://metascape.org) [10], as shown in figure (1). The chemokines genes were filtered out, and their common receptor (CR) was identified. The immune cells that express a higher level of the identified receptor were explored using DICE project tool (https://dice-database.org/). The expression of CR was searched in a microarray dataset (GSE77298) of synovial biopsies of RA and healthy controls. RNAseq dataset (GSE97165) of synovial biopsies taken from 19 early RA patients at baseline and after six months of Triple Disease-Modifying Anti-rheumatic drugs (tDMARD; methotrexate, sulfasalazine, and hydroxychloroquine) treatment.Results:84 DEGs were identified between uninfected and COVID-19 infected lung samples. These DEGs were enriched in pathways specific to (response to the virus, response to interferon, leukocyte activation, and chemotaxis). Interestingly, SARS-COV-2 infected lungs express more CCL4, CCL8, and CCL11; the three ligands shared the same receptor, which is CCR5. Top immune cells that express CCR5 were CD4 T memory T reg cells, Th17, Th1, and monocytes. CCR5 was significantly upregulated in RA compared to healthy controls synovium (p=0.04) and was dramatically downregulated after six months of tDMARD treatment (p=0.004), as shown in figure (2).Conclusion:Using publicly available transcriptomic datasets properly highlighted the possible beneficiary effect of DMARDs in patients with COVID-19, which can block CCR5 rich immune cells recruitment.References:[1]Favalli, E.G., et al.,COVID-19 infection and rheumatoid arthritis: Faraway, so close!Autoimmun Rev, 2020. 19(5): p. 102523.[2]Gianfrancesco, M.A., et al.,Rheumatic disease and COVID-19: initial data from the COVID-19 Global Rheumatology Alliance provider registries.The Lancet Rheumatology, 2020. 2(5): p. e250-e253.[3]Torre, D., A. Lachmann, and A. Ma’ayan,BioJupies: Automated Generation of Interactive Notebooks for RNA-Seq Data Analysis in the Cloud.Cell Systems, 2018. 7(5): p. 556-561.e3.Figure 1.Flowchart of transcriptomic analysisFigure 2.(A) Top immune cells that express CCR5 (B) CCR5 expression in synovial biopsies of RA and control (C) CCR5 expression at baseline and after 6 months of tDMARD treatment.Disclosure of Interests:None declared


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 453
Author(s):  
Camilla Kofoed Andersen ◽  
Sangita Khatri ◽  
Jonas Hansen ◽  
Sofie Slott ◽  
Rohith Pavan Parvathaneni ◽  
...  

Two types of single-walled carbon nanotubes (SWCNTs), HiPco- and carboxyl-SWCNT, are evaluated as drug carriers for the traditional anti-inflammatory drug methotrexate (MTX) and a small interfering RNA (siRNA) targeting NOTCH1 gene. The nanotubes are solubilized by PEGylation and covalently loaded with MTX. The coupling efficiency (CE%) of MTX is 77–79% for HiPco-SWCNT and 71–83% for carboxyl-SWCNT. siRNA is noncovalently attached to the nanotubes with efficiency of 90–97% for HiPco-SWCNT and 87–98% for carboxyl-SWCNT. Through whole body imaging in the second near-infrared window (NIR-II window, 1000–1700 nm), SWCNTs were found to be selectively accumulated in inflamed joints in a serum transfer mouse model. We further investigated the interactions of the siRNA/MTX loaded nanotubes with human blood and mice bone marrow cells. In human blood, both types of unloaded SWCNTs were associated with B cells, monocytes and neutrophils. Interestingly, loading with MTX suppressed SWCNTs targeting specificity to immune cells, especially B cells; in contrast, loading siRNA alone enhanced the targeting specificity. Loading both MTX and siRNA to carboxyl-SWCNT enhanced targeting specificity to neutrophils and monocytes but not B cells. The targeting specificity of SWCNTs can potentially be adjusted by altering the ratio of MTX and siRNA loaded. The combined results show that carbon nanotubes have the potential for delivery of cargo drugs specifically to immune cells involved in rheumatoid arthritis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sha Wu ◽  
Xiao-Feng Li ◽  
Yuan-Yuan Wu ◽  
Su-Qin Yin ◽  
Cheng Huang ◽  
...  

Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by immune cell infiltration, fibroblast-like synovial cell hyperproliferation, and cartilage and bone destruction. To date, numerous studies have demonstrated that immune cells are one of the key targets for the treatment of RA. N6-methyladenosine (m6A) is the most common internal modification to eukaryotic mRNA, which is involved in the splicing, stability, export, and degradation of RNA metabolism. m6A methylated-related genes are divided into writers, erasers, and readers, and they are critical for the regulation of cell life. They play a significant role in various biological processes, such as virus replication and cell differentiation by controlling gene expression. Furthermore, a growing number of studies have indicated that m6A is associated with the occurrence of numerous diseases, such as lung cancer, bladder cancer, gastric cancer, acute myeloid leukemia, and hepatocellular carcinoma. In this review, we summarize the history of m6A research and recent progress on RA research concerning m6A enzymes. The relationship between m6A enzymes, immune cells, and RA suggests that m6A modification offers evidence for the pathogenesis of RA, which will help in the development of new therapies for RA.


2020 ◽  
Author(s):  
Yilin Wang ◽  
Aneesah Khan ◽  
Aristotelis Antonopoulos ◽  
Laura Bouché ◽  
Christopher D Buckley ◽  
...  

AbstractIn healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate homeostasis but are recognized to adopt a pathological role in rheumatoid arthritis (RA), promoting the infiltration and activation of immune cells to perpetuate local inflammation, pain and joint destruction. Carbohydrates (glycans) attached to cell surface proteins are fundamental regulators of cellular interactions between stromal and immune cells, but very little is known about the glycome of SFs or how glycosylation regulates their biology. Here we fill these gaps in our understanding of stromal guided pathophysiology by systematically mapping glycosylation pathways in healthy and arthritic SFs. We used a combination of transcriptomic and glycomic analysis to show that transformation of fibroblasts into pro-inflammatory cells in RA is associated with profound glycan remodeling, a process that involves reduction of α2-6 terminal sialylation that is mostly mediated by TNFα-dependent inhibition of the glycosyltransferase ST6Gal1. We also show that sialylation of SFs correlates with distinct disease stages and SFs functional subsets in both human RA and models of mouse arthritis. We propose that pro-inflammatory cytokines in the joint remodel the SF-glycome, transforming a regulatory tissue intended to preserve local homeostasis, into an under-sialylated and highly pro-inflammatory microenvironment that contributes to an amplificatory inflammatory network that perpetuates chronic inflammation. These results highlight the importance of cell glycosylation in stromal immunology.


2020 ◽  
Vol 7 (4) ◽  
pp. 837-850 ◽  
Author(s):  
Helen R. Gosselt ◽  
Maxime M. A. Verhoeven ◽  
Maurits C. F. J. de Rotte ◽  
Saskia M. F. Pluijm ◽  
Ittai B. Muller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document