Counter Gravity Casting

Author(s):  
John Campbell
Keyword(s):  
2019 ◽  
Vol 11 (01) ◽  
pp. 1-7
Author(s):  
Roni Kusnowo ◽  
Kus Hanaldi

Animal feed knife is a tool that serves to cut and chop animal feed consisting of grass as the main ingredient with additives such as bran, herbs, centrate, cassava, tofu pulp and others. Therefore, as a cutting tool must have the properties of friction resistance, impact resistance, and have good sharpness, so that the material chosen is Ni-Hard 1. The use of centrifugal casting method was chosen because it has the advantage of being able to make castings with relatively thin thickness this is due to the influence of the centrifugal force on the distribution of metal liquids throughout the cavity in the mold. Case study in this study is the use of centrifugal casting methods as an alternative to gravity casting methods to overcome defects of misruns. This research was conducted to investigate the effect of speed on the formation of castings products. The method that was carried out began with a literature study on centrifugal casting, and continued by determining the material, the temperature of the cast is in the range 1250ºC - 1300ºC, and the type of mold. The next step is to do work drawings, pattern making, mold making, casting processes, fettling processes, and analysis. With variations in speed of 200 rpm, 300 rpm and 400 rpm, it can be seen the optimal speed for making this product. The results of this study obtained optimal speed at a speed of 300 rpm to make good quality of animal feed knife products.


2021 ◽  
Vol 5 (4) ◽  
pp. 110
Author(s):  
Flaminio Sales ◽  
Andrews Souza ◽  
Ronaldo Ariati ◽  
Verônica Noronha ◽  
Elder Giovanetti ◽  
...  

Polydimethylsiloxane (PDMS) is a polymer that has attracted the attention of researchers due to its unique properties such as transparency, biocompatibility, high flexibility, and physical and chemical stability. In addition, PDMS modification and combination with other materials can expand its range of applications. For instance, the ability to perform superhydrophobic coating allows for the manufacture of lenses. However, many of these processes are complex and expensive. One of the most promising modifications, which consists of the development of an interchangeable coating, capable of changing its optical characteristics according to some stimuli, has been underexplored. Thus, we report an experimental study of the mechanical and optical properties and wettability of pure PDMS and of two PDMS composites with the addition of 1% paraffin or beeswax using a gravity casting process. The composites’ tensile strength and hardness were lower when compared with pure PDMS. However, the contact angle was increased, reaching the highest values when using the paraffin additive. Additionally, these composites have shown interesting results for the spectrophotometry tests, i.e., the material changed its optical characteristics when heated, going from opaque at room temperature to transparent, with transmittance around 75%, at 70 °C. As a result, these materials have great potential for use in smart devices, such as sensors, due to its ability to change its transparency at high temperatures.


2006 ◽  
Vol 19 (1) ◽  
pp. 38-44 ◽  
Author(s):  
F.-Y. Hsu ◽  
M. R. Jolly ◽  
J. Campbell
Keyword(s):  

2007 ◽  
Vol 539-543 ◽  
pp. 1868-1873 ◽  
Author(s):  
Afsaneh Rabiei ◽  
Brian Neville ◽  
Nick Reese ◽  
Lakshmi Vendra

New composite metal foams are processed using powder metallurgy (PM) and gravity casting techniques. The foam is comprised of steel hollow spheres, with the interstitial spaces occupied by a solid metal matrix (Al or steel alloys). The cyclic compression loading of the products of both techniques has shown that the composite metal foams have high cyclic stability at very high maximum stress levels up to 68 MPa. Under cyclic loading, unlike other metal foams, the composite metal foams do not experience rapid strain accumulation within collapse bands and instead, a uniform distribution of deformation happen through the entire sample until the densification strain is reached. This is a result of more uniform cell structure in composite metal foams compared to other metal foams. As a result, the features controlling the fatigue life of the composite metal foams have been considered as sphere wall thickness and diameter, sphere and matrix materials, and processing techniques as well as bonding strength between the spheres and matrix.


2016 ◽  
Vol 682 ◽  
pp. 372-379
Author(s):  
Tomasz Rzychoń

In this paper microstructure and creep properties of Mg-Al-Ca-Sr, Mg-Zn-RE-Zr and Mg-Sn-Si gravity casting magnesium alloys are presented. The microstructure was characterized using light microscopy, scanning and transmission electron microscopy. Phase identification was made by SAED and XRD analysis. Creep tests were carried out in the temperature range from 180°C to 200°C at applied stress of 60 MPa. Microstructure of Mg-Al-Ca-Sr alloys composed of α-Mg grains and C36, C15 and C14 intermetallic compounds in the interdendritic regions. In case of Mg-Zn-RE-Zr alloys the dominant intermetallic compound is (Mg,Zn)12RE phase also located in the interdendritic regions. Microstructure of Mg-Sn-Si alloys after T6 heat treatment consists of plate-like precipitates of Mg2Sn phase, primary crystals of Mg2Si phase and globular Mg2Si phase. Among the alloys in this study, the low-cost Mg-5Al-3Ca-0.7Sr alloy has the best creep resistance. The other alloys, excluding the Mg-5Si-7Sn alloy, are characterized by a poorer creep resistance in compared to Mg-5Al-3Ca-0.7Sr alloy, however their creep resistance is better if compared to typical Mg-Al alloys. Creep resistance of Mg-5Si-7Sn alloy is very low.


2018 ◽  
Vol 1 (1) ◽  
pp. 007-012
Author(s):  
Andri Willy Adianta ◽  
Suprianto Suprianto ◽  
Arnius Daely ◽  
Mikael F. Bangun

Aluminium silikon alloy merupakan paduan aluminium yang banyak digunakan dalam bidang teknik. Paduan ini memiliki kekuatan yang baik dan banyak diproduksi menjadi suatu komponen melalui proses pengecoran. Kandungan silikon dapat mengakibatkan penurunan fluiditas coran alumunium yang pada akhirnya akan menurunkan kualitas coran, fluiditas ini juga dipengaruhi temperatur pada saat penuangan alumunium cair. Penelitian ini bertujuan untuk mengetahui efek temperatur penuangan terhadap fluiditas, karakteristik aliran dan cacat coran pada pengecoran aluminium silikon alloy menggunakan cetakan pasir. Pengecoran dilakukan dengan gravity casting, analisa aliran simulasi meliputi distribusi kecepatan aliran, temperatur, tekanan, cacat permukaan dan fluiditas yang terjadi pada saat proses pengisian rongga cetak serta perbandingan fluiditas coran dan cacat permukaan pada eksperimental. Temperatur penuangan 685, 710, 735, 760 dan 785°C dengan ketebalan cetakan pola 1, 3, 5, 7, 9, dan 12 mm. Proses simulasi menggunakan software berbasis computational fluid dynamic. Hasil penelitian diperoleh temperatur tuang 785oC memiliki kecepatan aliran tertinggi yaitu sebesar ±0.145 m/s pada rongga 12 mm dan distribusi temperatur yang tinggi yaitu sebesar ±759 oC pada rongga 3 mm, sedangkan temperatur tuang 685oC memiliki distribusi tekanan yang tinggi yaitu sebesar ±107287 Pa pada rongga 6 mm. Cacat permukaan terbanyak pada temperatur tuang 785oC dan temperatur tuang 685oC paling sedikit. Fluiditas coran terbaik pada temperatur 785oC dimana rongga 12, 9, 7, 5 dan 3 mm terisi penuh dan 1 mm mencapai 181.4 mm.   Aluminum silicon alloy is an aluminum alloy that is widely used in engineering. This alloy has good strength and plenty of it are produced into a component through the casting process. Silicon content could result in a decrease in fluidity of aluminum castings which in turn would reduce the quality of casting. This fluidity is also influenced by temperature at the time of pouring liquid aluminum. This study aims to determine the effect of pouring temperature on fluidity, flow characteristics and casting defects on aluminum alloy silicon casting by using sand mold. Casting was conducted by gravity casting, simulation flow analysis including flow velocity distribution, temperature, pressure, surface and fluidity defects that occured during the process of filling the mold cavity as well as the comparison of the fluidity of castings and surface defects in the experiment. Casting temperatures was 685, 710, 735, 760 and 785°C with a mold thickness of patterns 1, 3, 5, 7, 9 and 12 mm. The simulation process used software based on computational fluid dynamic. The result showed pouring temperature of 785oC had the highest flow velocity of ± 0.145 m/s in 12 mm cavity and a high temperature distribution of ± 759oC in cavity of 3 mm, while the pouring temperature of 685oC had a high pressure distribution of ± 107287 Pa in 6 mm cavity. Most surface defects occurred at pour temperature of 785oC and the least at pour temperature of 685oC. The best castings liquidity occurred at temperature of 785oC where the cavity of 12, 9, 7, 5 and 3 mm was fully filled and 1 mm reached 181.4 mm.


2021 ◽  
Vol 1035 ◽  
pp. 856-862
Author(s):  
Shu Sen Wu ◽  
Tian Guo ◽  
Shu Lin Lü ◽  
Wei Guo ◽  
Lan Qing Xia

The 10 vol% SiCp/Mg composites were prepared by external addition and stirring-casting method, and the hybrid reinforced (10 vol% SiCp+10 vol% Mg2Si)/Mg composites were prepared by combining in-situ method. The effects of melt ultrasonic treatment (UT) and forming processes on the thermophysical properties of the two composites were studied. The results show that UT can effectively disperse SiC particles in molten magnesium and reduce the casting porosity, while squeeze casting can significantly reduce the porosity of the composites, which can also significantly improve the thermal conductivity. The thermal conductivity (λ) of 10 vol.% SiCp/Mg composites squeeze casted after UT is 135.3 W/(mK) and the average coefficient of thermal expansion (CTE) is 19.95×10-6 K-1 at 293-373 K. Compared with gravity casting, the λ is increased by 17% and the CTE is reduced by 0.8%. The λ of (SiCp+Mg2Si)/Mg composite squeeze casted after UT is 132.4 W/(mK), and the CTE is 18.95×10-6 K-1, which is 27% lower than the CTE of pure magnesium.


Sign in / Sign up

Export Citation Format

Share Document