Feedstock Availability, Composition, New Potential Resources for Biohydrogen, Biomethane, and Biobutanol Production via Biotechnological Routes

Author(s):  
Navya Thomas ◽  
Musthafa O. Mavukkandy ◽  
Eanna Farrell ◽  
Hassan A. Arafat ◽  
Sudip Chakraborty
2020 ◽  
Vol 12 (11) ◽  
pp. 4595
Author(s):  
Jennifer Attard ◽  
Helena McMahon ◽  
Pat Doody ◽  
Johan Belfrage ◽  
Catriona Clark ◽  
...  

The bioeconomy can play a critical role in helping countries to find alternative sustainable sources of products and energy. Countries with diverse terrestrial and marine ecosystems will see diverging feedstock opportunities to develop these new value chains. Understanding the sources, composition, and regional availability of these biomass feedstocks is an essential first step in developing new sustainable bio-based value chains. In this paper, an assessment and analysis of regional biomass availability was conducted in the diverse regions of Andalusia and Ireland using a bioresource mapping model. The model provides regional stakeholders with a first glance at the regional opportunities with regards to feedstock availability and an estimate of the transportation costs associated with moving the feedstock to a different modelled location/region for the envisioned biorefinery plant. The analysis found that there were more than 30 million tonnes of (wet weight) biomass arisings from Ireland (84,000 km2) with only around 4.8 million tonnes from the Andalusian region (87,000 km2). The study found that Cork in Ireland stood out as the main contributor of biomass feedstock in the Irish region, with animal manures making the largest contribution. Meanwhile, the areas of Almería, Jaén, and Córdoba were the main contributors of biomass in the Andalusia region, with olive residues identified as the most abundant biomass resource. This analysis also found that, while considerable feedstock divergence existed within the regions, the mapping model could act as an effective tool for collecting and interpreting the regional data on a transnational basis.


2021 ◽  
pp. 100163
Author(s):  
Fanta Barry ◽  
Marie Sawadogo ◽  
Igor W.K. Ouédraogo ◽  
Maiimouna Bologo Traoré ◽  
Thomas Dogot

2010 ◽  
Vol 101 (13) ◽  
pp. 4826-4833 ◽  
Author(s):  
Rajeev K. Sukumaran ◽  
Vikram Joshua Surender ◽  
Raveendran Sindhu ◽  
Parameshwaran Binod ◽  
Kanakambaran Usha Janu ◽  
...  

Hollow nanostructures are nanoscale materials with interior cavities, high volumetric load capacity ratio and high porosity. This new generation structure has gained huge momentum in the field of energy storage and photovoltaics due to such promising physical and chemical features. This chapter highlights contributions of various works where hollow nanostructures of metals and carbonaceous materials had been used in solar cell over the last few years. The harnessing of efficiency with structural modifications in the hollow structures over the years was shown in various works. The effect of structure engineering on the performance of solar cell has been explained in detail where voids in metallic hollow nanostructure enhance light scattering and high charge recombination. Simultaneously, carbonaceous hollow nanostructured materials are considered to be the latest photoelectrode materials and designated to be alternatives for metallic hollow nanostructures counterpart due to their high feedstock availability and fabrication charges.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2747
Author(s):  
Dieu Linh Hoang ◽  
Chris Davis ◽  
Henri C. Moll ◽  
Sanderine Nonhebel

Biogas is expected to contribute 10% of the total renewable energy use in Europe in 2030. This expectation largely depends on the use of several biomass byproducts and wastes as feedstocks. However, the current development of a biobased economy requires biomass sources for multiple purposes. If alternative applications also use biogas feedstocks, it becomes doubtful whether they will be available for biogas production. To explore this issue, this paper aims to provide an overview of potential alternative uses of different biogas feedstocks being researched in literature. We conducted a literature review using the machine learning technique “co-occurrence analysis of terms”. This technique reads thousands of abstracts from literature and records when pairs of biogas feedstock-application are co-mentioned. These pairs are assumed to represent the use of a feedstock for an application. We reviewed 109 biogas feedstocks and 217 biomass applications, revealing 1053 connections between them in nearly 55,000 scientific articles. Our results provide two insights. First, a large share of the biomass streams presently considered in the biogas estimates have many alternative uses, which likely limit their contribution to future biogas production. Second, there are streams not being considered in present estimates for biogas production although they have the proper characteristics.


GCB Bioenergy ◽  
2010 ◽  
Vol 2 (5) ◽  
pp. 278-287 ◽  
Author(s):  
CHAD M. HELLWINCKEL ◽  
TRISTRAM O. WEST ◽  
DANIEL G. DE LA TORRE UGARTE ◽  
ROBERT D. PERLACK

2021 ◽  
Vol 13 (18) ◽  
pp. 10449
Author(s):  
Nurda Hussain ◽  
Mukhtar Ahmed ◽  
Saowapa Duangpan ◽  
Tajamul Hussain ◽  
Juntakan Taweekun

Bioenergy from rice biomass feedstock is considered one of the potential clean energy resources and several small biomass-based powerplants have been established in rice–growing areas of Thailand. Rice production is significantly affected by drought occurrence which results in declined biomass production and quality. The impact of water stress (WS) was evaluated on six rice cultivars for biomass quality, production and bioenergy potential. Rice cultivars were experimented on in the field under well–watered (WW) and WS conditions. Data for biomass contributing parameters were collected at harvest whereas rice biomass samples were analyzed for proximate and lignocellulosic contents. Results indicated that WS negatively influenced crop performance resulting in 11–41% declined biomass yield (BY). Stability assessment indicated that cultivars Hom Pathum and Dum Ja were stress–tolerant as they exhibited smaller reductions by 11% in their BY under WS. Statistics for proximate components indicated a significant negative impact influencing biomass quality as ash contents of Hom Chan, Dum Ja and RD-15 were increased by 4–29%. Lignocellulosic analysis indicated, an increase in lignin contents of Hom Nang Kaew, Hom Pathum, Dum Ja and RD–15 ranging 7–39%. Reduced biomass production resulted in a 10–42% reduction in bioenergy potential (E). Results proved that cultivation of stress-susceptible cultivars or farmer’s choice and occurrence of WS during crop growth will reduce biomass production, biomass feedstock availability to biomass-based powerplants and affect powerplant’s conversion efficiency resulting in declined bioenergy production.


2019 ◽  
Vol 11 (24) ◽  
pp. 7136 ◽  
Author(s):  
Haihong Song ◽  
Jianming Wang ◽  
Ankit Garg ◽  
Xuankai Lin ◽  
Qian Zheng ◽  
...  

Previous studies for removal of ammonium from wastewater were mainly conducted using biochars produced from agricultural residue. Feedstock type (agricultural residue, wood, animal waste, and aquatic waste), as well as pyrolysis temperature, can significantly influence biochar properties and hence its adsorption capacity. Such studies are useful in decision making for selecting biochar depending on feedstock availability and pyrolysis temperature. This study aims to explore the effects of different types of biochar (laboratory prepared novel water hyacinth and algae biochar, conventional cedar wood, rice straw, and pig manure biochar) on the adsorption kinetics for ammonium removal from wastewater. The adsorption kinetics of biochars were compared to that of commercially available clinoptilolite and interpreted with their respective physicochemical properties (SEM, FTIR, XRD). Batch tests were performed to evaluate the effects of biochars on adsorption of ammonium nitrogen at different concentrations (10 mg/L and 100 mg/L). The tests reveal that clinoptilolite has the highest adsorption capacity. Among biochars, pig manure (animal based) biochar has a higher adsorption capacity in comparison to conventional agricultural residues based biochars. The capacity of pig manure biochar under highly concentrated ammonium solution (100 mg/L) is merely 20% lower than that of clinoptilolite. Both water hyacinth and algae biochar produced at higher temperature (600 °C) show higher sorption rate and capacity (depending on the initial concentration of ammonium) for ammonium in comparison to that produced at a lower temperature (300 °C). This is likely due to an increase in porosity at higher temperatures of pyrolysis.


Sign in / Sign up

Export Citation Format

Share Document