Study of Managed Aquifer Recharge and Climate Change, Using a Numerical Model: The Figuig Aquifer (Eastern High Atlas, Morocco)

Author(s):  
Abdelhakim Jilali ◽  
Abderrahmane El Harradji
Author(s):  
João Paulo Lobo Ferreira ◽  
Teresa E. Leitão

In the Algarve southern Portugal region, Managed Aquifer Recharge (MAR) research activities have been developed to provide not only water surplus storage in aquifers during wet years, focusing in the Querença-Silves aquifer (FP6 ASEMWATERNet Coordination Action), but also groundwater quality rehabilitation in the Campina de Faro aquifer (FP6 Gabardine Project). Following MAR research potentialities in southern Portugal, this paper describes the objectives, conceptual demonstration, background and capabilities of one of the selected Circum-Mediterranean pilot sites (in Portugal) that will be researched in the new FP7-ENV-2013-WATER-INNO-DEMO MARSOL project, which started Dec. 1st, 2013. In the Algarve pilot site, several case-study areas will be located in the Querença-Silves aquifer and in the Campina de Faro aquifer.


2016 ◽  
Author(s):  
Yonatan Ganot ◽  
Ran Holtzman ◽  
Noam Weisbrod ◽  
Ido Nitzan ◽  
Yoram Katz ◽  
...  

Abstract. We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors and observation wells. During a month (January 2015) of continuous intensive MAR (2.45 · 106 m3 discharged to a 10.7 hectare area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from ~ 11 to ~ 0.4 m d−1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments, whereas clogging processes at pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.


2017 ◽  
Vol 21 (9) ◽  
pp. 4479-4493 ◽  
Author(s):  
Yonatan Ganot ◽  
Ran Holtzman ◽  
Noam Weisbrod ◽  
Ido Nitzan ◽  
Yoram Katz ◽  
...  

Abstract. We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.


Author(s):  
William M. Alley ◽  
Rosemarie Alley

Managed aquifer recharge is a widespread and growing practice. In addition, using recycled water for groundwater recharge and water supply continues to grow as water resources are increasingly strained by population growth and climate change. Through a series of examples from around the world, the chapter illustrates the value as well as limitations of managed aquifer recharge and recycled water.


Water ◽  
2017 ◽  
Vol 9 (5) ◽  
pp. 343 ◽  
Author(s):  
Carmen Rupérez-Moreno ◽  
Julio Pérez-Sánchez ◽  
Javier Senent-Aparicio ◽  
Pilar Flores-Asenjo ◽  
Carmen Paz-Aparicio

2021 ◽  
Vol 7 (17) ◽  
pp. eabe6025
Author(s):  
Xiaogang He ◽  
Benjamin P. Bryant ◽  
Tara Moran ◽  
Katharine J. Mach ◽  
Zhongwang Wei ◽  
...  

Harvesting floodwaters to recharge depleted groundwater aquifers can simultaneously reduce flood and drought risks and enhance groundwater sustainability. However, deployment of this multibeneficial adaptation option is fundamentally constrained by how much water is available for recharge (WAFR) at present and under future climate change. Here, we develop a climate-informed and policy-relevant framework to quantify WAFR, its uncertainty, and associated policy actions. Despite robust and widespread increases in future projected WAFR in our case study of California (for 56/80% of subbasins in 2070–2099 under RCP4.5/RCP8.5), strong nonlinear interactions between diversion infrastructure and policy uncertainties constrain how much WAFR can be captured. To tap future elevated recharge potential through infrastructure expansion under deep uncertainties, we outline a novel robustness-based policy typology to identify priority areas of investment needs. Our WAFR analysis can inform effective investment decisions to adapt to future climate-fueled drought and flood risk over depleted aquifers, in California and beyond.


2018 ◽  
Vol 2018 (9) ◽  
pp. 4639-4645
Author(s):  
Troy Walker ◽  
Andrew Newbold ◽  
Lauren Zuravnsky ◽  
Charles Bott ◽  
Germano Salazar-Benites ◽  
...  

2018 ◽  
Vol 2018 (9) ◽  
pp. 4635-4638
Author(s):  
Tyler Nading ◽  
Larry Schimmoller ◽  
Germano Salazar-Benites ◽  
Charles Bott ◽  
Jamie Mitchell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document