A time-dependent PDE regularization to model functional data defined over spatio-temporal domains

Author(s):  
Eleonora Arnone ◽  
Laura Azzimonti ◽  
Fabio Nobile ◽  
Laura M. Sangalli
Author(s):  
Robert A. Van Gorder

The Turing and Benjamin–Feir instabilities are two of the primary instability mechanisms useful for studying the transition from homogeneous states to heterogeneous spatial or spatio-temporal states in reaction–diffusion systems. We consider the case when the underlying reaction–diffusion system is non-autonomous or has a base state which varies in time, as in this case standard approaches, which rely on temporal eigenvalues, break down. We are able to establish respective criteria for the onset of each instability using comparison principles, obtaining inequalities which involve the in general time-dependent model parameters and their time derivatives. In the autonomous limit where the base state is constant in time, our results exactly recover the respective Turing and Benjamin–Feir conditions known in the literature. Our results make the Turing and Benjamin–Feir analysis amenable for a wide collection of applications, and allow one to better understand instabilities emergent due to a variety of non-autonomous mechanisms, including time-varying diffusion coefficients, time-varying reaction rates, time-dependent transitions between reaction kinetics and base states which change in time (such as heteroclinic connections between unique steady states, or limit cycles), to name a few examples.


2012 ◽  
Vol 49 (2) ◽  
pp. 481-492 ◽  
Author(s):  
Clare B. Embling ◽  
Janine Illian ◽  
Eric Armstrong ◽  
Jeroen van der Kooij ◽  
Jonathan Sharples ◽  
...  

2018 ◽  
Vol 130 ◽  
pp. 359-367
Author(s):  
Daphne van Leeuwen ◽  
Joost Bosman ◽  
Elenna Dugundji

2003 ◽  
Vol 31 (3) ◽  
pp. 233-244
Author(s):  
Antonio Campo ◽  
Francisco Alhama

Evaluation of spatio-temporal temperatures and total heat transfer rates in simple bodies (large plate, long cylinder and sphere) has been traditionally explained in undergraduate courses of heat transfer by the Heisler/Gröber or by the Boelter/Gröber charts. These three charts pose some restrictions with respect to the applicable times. Additionally, the charts do not provide information about the time-dependent heat fluxes at the surface. Conversely, evaluation of spatio-temporal temperatures, time-dependent heat fluxes at the surface and total heat transfer rates can be easily done for the entire time domain with the network simulation method (NSM) in conjunction with the commercial code PSPICE. NSM relies on the existing physical analogy between the unsteady transport of electric current and the unsteady transport of unidirectional heat by conduction. This analogy has been named the RC analogy in the specialized literature. The code PSPICE simulates the electric circuits for a specific body together with the imposed boundary and initial conditions, and produces numerical results for the quantities of interest, such as: the spatio-temporal temperature distributions; the time-dependent heat flux distributions at the surface; and the total heat transfer.


2017 ◽  
Vol 11 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Katarzyna Topczewska

AbstractIn this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc) heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.


2021 ◽  
Vol 22 (21) ◽  
pp. 11792
Author(s):  
Lena-Marie Woelk ◽  
Sukanya A. Kannabiran  ◽  
Valerie J. Brock  ◽  
Christine E. Gee  ◽  
Christian Lohr  ◽  
...  

Live-cell Ca2+ fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for static images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to time-dependent image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca2+ microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca2+ signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.


2019 ◽  
Vol 131 ◽  
pp. 176-193 ◽  
Author(s):  
Joshua French ◽  
Piotr Kokoszka ◽  
Stilian Stoev ◽  
Lauren Hall

Sign in / Sign up

Export Citation Format

Share Document