XEN and the Art of Stem Cell Maintenance: Molecular Mechanisms Maintaining Cell Fate and Self-Renewal in Extraembryonic Endoderm Stem (XEN) Cell Lines

Author(s):  
Amy Ralston
2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi23-vi24
Author(s):  
Kelly Mitchell ◽  
Joseph Alvarado ◽  
Christopher Goins ◽  
Steven Martinez ◽  
Jonathan Macdonald ◽  
...  

Abstract Glioblastoma (GBM) progression and resistance to conventional therapies is driven in part by cells within the tumor with stem cell properties including quiescence, self-renewal and drug efflux potential. It is thought that eliminating these cancer stem cells (CSCs) is a key component to successful clinical management of GBM. However, currently, few known molecular mechanisms driving CSCs can be exploited for therapeutic development. Core transcription factors such as SOX2, OLIG2, OCT4 and NANOG maintain the CSC state in GBM. Our laboratory recently uncovered a self-renewal signaling axis involving RBBP5 that is necessary and sufficient for CSC maintenance through driving expression of these core stem cell maintenance transcription factors. RBBP5 is a component of the WRAD complex, which promotes Lys4 methylation of histone H3 to positively regulate transcription. We hypothesized that targeting RBBP5 could be a means to disrupt epigenetic programs that maintain CSCs in stemness transcriptional states. We found that genetic and pharmacologic inhibition of the WRAD complex reduced CSC growth, self-renewal and tumor initiation potential. WRAD inhibitors partially dissembled the WRAD complex and reduced H3K4 trimethylation both globally and at the promoters of key stem cell maintenance transcription factors. Using a CSC reporter system, we demonstrated that WRAD complex inhibition decreased growth of SOX2/OCT4 expressing CSCs in a concentration-dependent manner as quantified by live imaging. Overall, our studies assess the function of the WRAD complex and the effect of WRAD complex inhibitors in preclinical models and specifically on the stem cell state for the first time in GBM. Studying the functions of the WRAD complex in CSCs may improve understanding of GBM pathogenesis and elucidate how CSCs survive despite aggressive chemotherapy and radiation. Our ongoing studies aim to develop brain penetrant inhibitors targeting the WRAD complex as an anti-CSC strategy that could potentially synergize with standard of care treatments.


Blood ◽  
2013 ◽  
Vol 122 (16) ◽  
pp. 2812-2822 ◽  
Author(s):  
Tao Wang ◽  
Vijayalakshmi Nandakumar ◽  
Xiao-Xia Jiang ◽  
Lindsey Jones ◽  
An-Gang Yang ◽  
...  

Key Points Mysm1 is required to maintain the quiescence and pool size of HSC, and its deletion severely impairs the survival and function of HSC. Mysm1 controls HSC homeostasis by regulating Gfi1 expression via modulating histone modifications and transcriptional factors recruitment.


Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110240
Author(s):  
Yingying Han ◽  
Alvaro Villarreal-Ponce ◽  
Guadalupe Gutierrez ◽  
Quy Nguyen ◽  
Peng Sun ◽  
...  

Author(s):  
Boris Egger ◽  
James M Chell ◽  
Andrea H Brand

Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.


PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9152 ◽  
Author(s):  
Geqiang Li ◽  
Zhengqi Wang ◽  
Kristy L. Miskimen ◽  
Yi Zhang ◽  
William Tse ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 819-819
Author(s):  
Rebecca S. LaRue ◽  
Hanh Nguyen ◽  
Karen Sachs ◽  
Nurul Azyan Mohd Hassan ◽  
Ernesto Diaz-Flores ◽  
...  

Abstract Hyperactivated Ras-pathways serve as oncogenic drivers in multiple human tumors including acute myelogenous leukemia (AML) (Ahearn et al. Nat Rev Mol Cell Biol 2011). The specific functions of these pathways in AML are unclear, thwarting the rational application of targeted therapeutics. Recently, we have shown that NRASG12V–activated signaling pathways are critical to leukemia stem cell maintenance (Sachs et al. submitted). To elucidate which Ras-activated signaling molecules mediate self-renewal in AML, we employed a murine model that harbors Mll-AF9 and a tetracycline repressible, activated NRAS (NRASG12V) and develops AML (Kim et al. Blood 2009). Primary leukemia cells were treated with therapeutic agents targeting Ras-activated signaling pathways. We used PD325901 to inhibit the Mek-Erk pathway, GDC0941 to inhibit the Pi3k pathway, and RAD001 to inhibit the mTor pathway. Using MTS assays, we identified the IC50 dose for each of these agents. Inhibitor-treated leukemia cells were submitted for RNA sequencing in order to investigate the effects of these agents on leukemia gene expression. Previously, we identified a list of NRASG12V responsive genes in our model. In these studies, we identified that PD325901-treatment most closely recapitulates the effect of NRASG12V inhibition on this comprehensive list of RAS-responsive genes. However, when we study the effects of these inhibitors on the subset of RAS-responsive genes that mediate leukemia self-renewal, we find that both PD325901 and RAD001 independently recapitulate the effects of NRASG12V withdrawal on this subset of genes implicating the Mek and mTor pathways in leukemia self renewal. Next, we treated primary leukemia cells with the IC50 dose of each drug and plated them in colony forming assays. We found that Mek or mTor inhibition, but not Pi3k inhibition, abrogated secondary colony formation corroborating our gene expression analyses and showing that, at doses that have equivalent effects on cell growth, only the Mek and mTor pathways are important for leukemia cell stem cell maintenance. These studies provide potential targets for leukemia stem cell-specific therapies. Disclosures: Sachs: Silicon Valley Biosystems: Consultancy. Bendall:DVS Sciences: Consultancy. Nolan:SAB for DVS Sciences and Nodality: Chairman Other; Cell Signalling Technologies and Becton Dickenson, Inc: Consultancy. Largaespada:Discovery Genomics, Inc: Consultancy, Share Holder Other; NeoClone Biotechnology, Inc: Consultancy, Share Holder, Share Holder Other.


Sign in / Sign up

Export Citation Format

Share Document