The Increase of the Pro-inflammatory Double Negative (IgD−CD27−) B Cell Subset Is Related to the Severity of Alzheimer’s Disease

Author(s):  
Matteo Bulati ◽  
Mariavaleria Pellicanò ◽  
Giuseppina Colonna-Romano ◽  
Calogero Caruso
Author(s):  
Liu-Lin Xiong ◽  
Lu-Lu Xue ◽  
Ruo-Lan Du ◽  
Rui-Ze Niu ◽  
Li Chen ◽  
...  

AbstractIn recent years, biomarkers have been integrated into the diagnostic process and have become increasingly indispensable for obtaining knowledge of the neurodegenerative processes in Alzheimer’s disease (AD). Peripheral blood mononuclear cells (PBMCs) in human blood have been reported to participate in a variety of neurodegenerative activities. Here, a single-cell RNA sequencing analysis of PBMCs from 4 AD patients (2 in the early stage, 2 in the late stage) and 2 normal controls was performed to explore the differential cell subpopulations in PBMCs of AD patients. A significant decrease in B cells was detected in the blood of AD patients. Furthermore, we further examined PBMCs from 43 AD patients and 41 normal subjects by fluorescence activated cell sorting (FACS), and combined with correlation analysis, we found that the reduction in B cells was closely correlated with the patients’ Clinical Dementia Rating (CDR) scores. To confirm the role of B cells in AD progression, functional experiments were performed in early-stage AD mice in which fibrous plaques were beginning to appear; the results demonstrated that B cell depletion in the early stage of AD markedly accelerated and aggravated cognitive dysfunction and augmented the Aβ burden in AD mice. Importantly, the experiments revealed 18 genes that were specifically upregulated and 7 genes that were specifically downregulated in B cells as the disease progressed, and several of these genes exhibited close correlation with AD. These findings identified possible B cell-based AD severity, which are anticipated to be conducive to the clinical identification of AD progression.


2020 ◽  
Vol 91 (11) ◽  
pp. 1219-1226
Author(s):  
Jay Amin ◽  
Delphine Boche ◽  
Zoe Clough ◽  
Jessica Teeling ◽  
Anthony Williams ◽  
...  

BackgroundInflammation plays a key role in the aetiology and progression of Alzheimer’s disease (AD). However, the immunophenotype of the second most common neurodegenerative cause of dementia, dementia with Lewy bodies (DLB), remains unclear. To date there have been no studies examining peripheral inflammation in DLB using multiplex immunoassay and flow cytometry concomitantly. We hypothesised that, using blood biomarkers, DLB would show an increased proinflammatory profile compared with controls, and that there would be a distinct profile compared with AD.Methods93 participants (31 with DLB, 31 with AD and 31 healthy older controls) completed a single study visit for neuropsychiatric testing and phlebotomy. Peripheral blood mononuclear cells were quantified for T and B cell subsets using flow cytometry, and serum cytokine concentrations were measured using multiplex immunoassay.ResultsWe detected reduced relative numbers of helper T cells and reduced activation of B cells in DLB compared with AD. Additionally, interleukin (IL)-1β was detected more frequently in DLB and the serum concentration of IL-6 was increased compared with controls.ConclusionsPeripheral inflammation is altered in DLB compared with AD, with T cell subset analysis supporting a possible shift towards senescence of the adaptive immune system in DLB. Furthermore, there is a proinflammatory signature of serum cytokines in DLB. Identification of this unique peripheral immunophenotype in DLB could guide development of an immune-based biomarker and direct future work exploring potential immune modulation as a novel treatment.


2010 ◽  
Vol 6 ◽  
pp. S262-S262
Author(s):  
Anita Szodorai ◽  
Cornelia Marty ◽  
Christoph Hock ◽  
Roger M. Nitsch

2005 ◽  
Vol 174 (3) ◽  
pp. 1580-1586 ◽  
Author(s):  
Michael G. Agadjanyan ◽  
Anahit Ghochikyan ◽  
Irina Petrushina ◽  
Vitaly Vasilevko ◽  
Nina Movsesyan ◽  
...  

2021 ◽  
Author(s):  
Inhee Mook-Jung ◽  
Jong-Chan Park ◽  
Jinsung Noh ◽  
Sukjin Jang ◽  
Ki Hyun Kim ◽  
...  

Abstract Alzheimer’s disease (AD) is the most common type of dementia. Numerous reports have revealed that peripheral immune systems are linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, one hundred-thirty-three participants were included in both baseline and follow-up 2nd year. Next, we performed next-generation sequencing (NGS)-based B cell receptor (BCR) repertoire profiling followed by pair-wise overlap analysis. The longitudinal change in the B lymphocytes population was associated with increased cerebral amyloid deposition. Furthermore, patients with AD shared highly similar class-switched BCR sequences with identical isotypes despite the high somatic hypermutation rate of BCR sequences. These commonalities of BCR repertoires of the patients with AD show the possibility of immunological stimuli by amyloid precursor protein (APP). Thus, we provide evidence for both quantitative and qualitative changes in B lymphocytes during AD pathogenesis. The genetic information of patients from the NGS-based BCR repertoire profiling can lead to the development of immune-based therapeutics and treatments for AD.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 565-565
Author(s):  
Davide Bagnara ◽  
Margherita Squillario ◽  
David Kipling ◽  
Thierry Mora ◽  
Aleksandra Walczak ◽  
...  

Abstract In humans, whether B cells with the IgM+IgD+CD27+ phenotype represent an independent lineage involved in T-independent responses, similar to mouse marginal zone B cells, or whether they are part of the germinal center-derived memory B-cell pool generated during responses to T-dependent antigens, is still a debated issue. To address this question, we performed high-throughput Ig sequencing of B-cell subsets from paired blood and spleen samples and analyzed the clonal relationships between them. We isolated and analyzed 3 different B cell subsets based on CD27 and IgD staining from both blood and spleen: IgD+CD27+ (MZ) - amplified with Cmu primers IgD-CD27+ (switched and IgM-only) with Cmu, Cgamma and Calpha primers IgD-CD27- (CD27- memory or double-negative DN) with the same three primers We obtained 95729 unique sequences that clustered in 49199 different clones: 1125 clones were shared between blood and spleen of the same B-cell subset, and 1681 clones were shared between different subsets, allowing us to trace their relationships. We analyzed these clones that share sequences from different subsets/tissues for their mutation frequency distribution, CDR3-length, and VH/JH family usage, and compared these different characteristics with the bulk of sequences from their respective subset of origin. The analysis of clones shared between blood and spleen for switched IgG/IgA and for MZ subsets suggests different recirculation dynamics. For switched cells, the blood appears to be a mixture of splenic and other lymphoid tissues B cells. For MZ B cells in contrast, the blood appear to be only composed of a subgroup of the splenic repertoire, in agreement with the observation that marginal zone B cells recirculate and are mainly generated in the spleen. Clonal relationships between the IgM clones (originating from the MZ, IgM-only and double negative compartments) show that the clones involved display the characteristics of IgM-only B cells whatever their subset of origin, even in the case of the paired MZ/double-negative sequences that were not supposed to include IgM-only sequences. We therefore conclude that the clones shared between the various IgM subsets do not represent b between them, but rather correspond to a heterogeneous phenotype of the IgM-only population that concerns both IgD and CD27 expression, leading to a partial overlap with the MZ and double-negative gates. Clones shared between the MZ and the switched IgG and IgA compartment also show, for their IgM part, the mutation and repertoire characteristics of IgM-only cells and not of MZ B cells, reinforcing the conclusion that IgM-only are true memory B cells, and constitute the only subset showing clonal relationships with switched memory B cells. In summary, we report that MZ B cells have different recirculation characteristics and do not show real clonal relationships with IgM-only and switched memory B cells, in agreement with the notion that they represent a distinct differentiation pathway. In contrast, the only precursor-product relationship between IgM memory and switched B cells appear to concern a B cell subset that has been described as "IgM-only", but appears to have a more heterogeneous expression of IgD than previously reported and therefore contribute to 3-15% of the MZ compartment. Searching for markers that would permit to discriminate between marginal zone and germinal center-derived IgM memory B cells is obviously required to further delineate their respective function. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document