scholarly journals Single-cell RNA sequencing reveals B cell–related molecular biomarkers for Alzheimer’s disease

Author(s):  
Liu-Lin Xiong ◽  
Lu-Lu Xue ◽  
Ruo-Lan Du ◽  
Rui-Ze Niu ◽  
Li Chen ◽  
...  

AbstractIn recent years, biomarkers have been integrated into the diagnostic process and have become increasingly indispensable for obtaining knowledge of the neurodegenerative processes in Alzheimer’s disease (AD). Peripheral blood mononuclear cells (PBMCs) in human blood have been reported to participate in a variety of neurodegenerative activities. Here, a single-cell RNA sequencing analysis of PBMCs from 4 AD patients (2 in the early stage, 2 in the late stage) and 2 normal controls was performed to explore the differential cell subpopulations in PBMCs of AD patients. A significant decrease in B cells was detected in the blood of AD patients. Furthermore, we further examined PBMCs from 43 AD patients and 41 normal subjects by fluorescence activated cell sorting (FACS), and combined with correlation analysis, we found that the reduction in B cells was closely correlated with the patients’ Clinical Dementia Rating (CDR) scores. To confirm the role of B cells in AD progression, functional experiments were performed in early-stage AD mice in which fibrous plaques were beginning to appear; the results demonstrated that B cell depletion in the early stage of AD markedly accelerated and aggravated cognitive dysfunction and augmented the Aβ burden in AD mice. Importantly, the experiments revealed 18 genes that were specifically upregulated and 7 genes that were specifically downregulated in B cells as the disease progressed, and several of these genes exhibited close correlation with AD. These findings identified possible B cell-based AD severity, which are anticipated to be conducive to the clinical identification of AD progression.

2021 ◽  
Vol 13 ◽  
Author(s):  
Fanghong Shao ◽  
Meiting Wang ◽  
Qi Guo ◽  
Bowen Zhang ◽  
Xiangting Wang

The detailed characteristics of neuronal cell populations in Alzheimer’s disease (AD) using single-cell RNA sequencing have not been fully elucidated. To explore the characterization of neuronal cell populations in AD, this study utilized the publicly available single-nucleus RNA-sequencing datasets in the transgenic model of 5X familial Alzheimer’s disease (5XFAD) and wild-type mice to reveal an AD-associated excitatory neuron population (C3:Ex.Neuron). The relative abundance of C3:Ex.Neuron increased at 1.5 months and peaked at 4.7 months in AD mice. Functional pathways analyses showed that the pathways positively related to neurodegenerative disease progression were downregulated in the C3:Ex.Neuron at 1.5 months in AD mice. Based on the differentially expressed genes among the C3:Ex.Neuron, four subtypes (C3.1–4) were identified, which exhibited distinct abundance regulatory patterns during the development of AD. Among these subtypes, the C3.1 neurons [marked by netrin G1 (Ntng1)] exhibited a similar regulatory pattern as the C3:Ex.Neuron in abundance during the development of AD. In addition, our gene set variation analysis (GSEA) showed that the C3.1 neurons, instead of other subtypes of the C3:Ex.Neuron, possessed downregulated AD pathways at an early stage (1.5 months) of AD mice. Collectively, our results identified a previously unidentified subset of excitatory neurons and provide a potential application of these neurons to modulate the disease susceptibility.


2019 ◽  
Vol 122 (4) ◽  
pp. 1291-1296 ◽  
Author(s):  
Djuna von Maydell ◽  
Mehdi Jorfi

Microglia constitute ~10–20% of glial cells in the adult human brain. They are the resident phagocytic immune cells of the central nervous system and play an integral role as first responders during inflammation. Microglia are commonly classified as “HM” (homeostatic), “M1” (classically activated proinflammatory), or “M2” (alternatively activated). Multiple single-cell RNA-sequencing studies suggest that this discrete classification system does not accurately and fully capture the vast heterogeneity of microglial states in the brain. In fact, a recent single-cell RNA-sequencing study showed that microglia exist along a continuous spectrum of states. This spectrum spans heterogeneous populations of homeostatic and neuropathology-associated microglia in both healthy and Alzheimer’s disease (AD) mouse brains. Major risk factors, such as sex, age, and genes, modulate microglial states, suggesting that shifts along the trajectory might play a causal role in AD pathogenesis. This study provides important insight into the cellular mechanisms of AD and underlines the potential of novel cell-based therapies for AD.


2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Marta Olah ◽  
Vilas Menon ◽  
Naomi Habib ◽  
Mariko Taga ◽  
Yiyi Ma ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Olah ◽  
Vilas Menon ◽  
Naomi Habib ◽  
Mariko F. Taga ◽  
Yiyi Ma ◽  
...  

AbstractThe extent of microglial heterogeneity in humans remains a central yet poorly explored question in light of the development of therapies targeting this cell type. Here, we investigate the population structure of live microglia purified from human cerebral cortex samples obtained at autopsy and during neurosurgical procedures. Using single cell RNA sequencing, we find that some subsets are enriched for disease-related genes and RNA signatures. We confirm the presence of four of these microglial subpopulations histologically and illustrate the utility of our data by characterizing further microglial cluster 7, enriched for genes depleted in the cortex of individuals with Alzheimer’s disease (AD). Histologically, these cluster 7 microglia are reduced in frequency in AD tissue, and we validate this observation in an independent set of single nucleus data. Thus, our live human microglia identify a range of subtypes, and we prioritize one of these as being altered in AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Zhang ◽  
Renkai Wang ◽  
Guangchao Wang ◽  
Bo Zhang ◽  
Chao Wang ◽  
...  

The bone marrow microenvironment is composed primarily of immune and stromal cells that play important roles in fracture healing. Although immune cells have been identified in mouse bone marrow, variations in their numbers and type during the fracture healing process remain poorly defined. In this study, single-cell RNA sequencing was used to identify immune cells in fracture tissues, including neutrophils, monocytes, T cells, B cells, and plasma cells. The number of B cells decreased significantly in the early stage of fracture healing. Furthermore, B cells in mice fracture models decreased significantly during the epiphyseal phase and then gradually returned to normal during the epiphyseal transformation phase of fracture healing. The B-cell pattern was opposite to that of bone formation and resorption activities. Notably, B-cell–derived exosomes inhibited bone homeostasis in fracture healing. In humans, a decrease in the number of B cells during the epiphyseal phase stimulated fracture healing. Then, as the numbers of osteoblasts increased during the callus reconstruction stage, the number of B cells gradually recovered, which reduced additional bone regeneration. Thus, B cells are key regulators of fracture healing and inhibit excessive bone regeneration by producing multiple osteoblast inhibitors.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 511
Author(s):  
Pedro Perdiguero ◽  
Esther Morel ◽  
Carolina Tafalla

Single-cell sequencing technologies capable of providing us with immune information from dozens to thousands of individual cells simultaneously have revolutionized the field of immunology these past years. However, to date, most of these novel technologies have not been broadly applied to non-model organisms such as teleost fish. In this study, we used the 10× Genomics single cell RNA sequencing technology and used it to analyze for the first time in teleost fish the transcriptional pattern of single B cells from peripheral blood. The analysis of the data obtained in rainbow trout revealed ten distinct cell clusters that seem to be associated with different subsets and/or maturation/differentiation stages of circulating B cells. The potential characteristics and functions of these different B cell subpopulations are discussed on the basis of their transcriptomic profile. The results obtained provide us with valuable information to understand the biology of teleost B cells and offer us a repertoire of potential markers that could be used in the future to differentiate trout B cell subsets.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingtao Hu ◽  
Yu Hong ◽  
Pan Qi ◽  
Guangqing Lu ◽  
Xueying Mai ◽  
...  

AbstractTo gain mechanistic insights into the functions and developmental dynamics of tumor-infiltrated immune cells, especially B-lymphocytes, here we combine single-cell RNA-sequencing and antigen receptor lineage analysis to characterize a large number of triple-negative breast cancer infiltrated immune cells and report a comprehensive atlas of tumor-infiltrated B-lymphocytes. The single-cell transcriptional profiles reveal significant heterogeneity in tumor-infiltrated B-cell subgroups. The single-cell antigen receptor analyses demonstrate that compared with those in peripheral blood, tumor-infiltrated B-cells have more mature and memory B-cell characteristics, higher clonality, more class switching recombination and somatic hypermutations. Combined analyses suggest local differentiation of infiltrated memory B-cells within breast tumors. The B-cell signatures based on the single-cell RNA-sequencing results are significantly associated with improved survival in breast tumor patients. Functional analyses of tumor-infiltrated B-cell populations suggest that mechanistically, B-cell subgroups may contribute to immunosurveillance through various pathways. Further dissection of tumor-infiltrated B-cell populations will provide valuable clues for tumor immunotherapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 297-297 ◽  
Author(s):  
Sarah Haebe ◽  
Tanaya Shree ◽  
Anuja Sathe ◽  
Grady Day ◽  
HoJoon Lee ◽  
...  

Follicular lymphoma (FL) originates from a single B cell that has rearranged one copy of its BCL2 gene on chromosome 18 to the Ig locus on chromosome 14 and in addition has acquired a mutation in a histone modifying gene such as CREBBP or KMTD2. By the time the disease is diagnosed the progeny of this original cell harbors additional mutations and is usually found at multiple lymphoid sites throughout the body. At each of these sites the malignant cells are accompanied by a rich network of follicular dendritic cells, T cells and other immune cells. This tumor microenvironment (TME) is clearly an important feature of the biology of FL and can impact the clinical behavior of the disease (Dave et al., NEJM, 2004). It remains unknown whether tumor clonal heterogeneity and the composition of the TME differ between various lymphoma sites within the same patient. Single cell RNA sequencing facilitates a detailed and unbiased view of both the tumor clone and the complex TME. To profile the TME and explore FL tumor evolution, we obtained fine needle aspirates (FNAs) at 2 different sites in the body and peripheral blood specimens all on the same day and subjected these samples to single cell RNA sequencing and immune repertoire analysis. These biopsies were taken prior to therapy from patients entering immunotherapy clinical trials (NCT02927964, NCT03410901). Single cell RNA sequencing of FNA and blood samples was performed using the 10X Genomics platform to an average targeted depth of 50,000 reads/cell. We have prepared sequencing libraries from 15 tumor FNA and peripheral blood samples from 5 patients thus far. Typically, 3,000-10,000 cells have been sequenced per sample, with excellent sequencing quality metrics. By applying Uniform Manifold Approximation and Projection (UMAP), a dimensionality reduction algorithm, we found the TME of these FL patients to be richly populated by many phenotypically discrete non-malignant cells, including many subpopulations of T cells, B-cells, myeloid cells, NK cells and dendritic cells. Evaluating the combined dataset containing all tumor samples for all 5 patients, we found that malignant B cells from different patients clearly clustered apart from each other, a feature not dependent on immunoglobulin clonality or HLA type. Each patient's tumor population contained 3-5 distinct subpopulations, presumably a result of multiclonal tumor evolution. Nonetheless, we were able to define several malignant B-cell sub-phenotypes common to all patients. Intriguingly, compared to malignant B cells, infiltrating non-malignant B cells showed higher MHC I expression, activation markers, and an enrichment in interferon-induced genes. Of note, we could also detect circulating tumor cells in peripheral blood samples of several patients, and these exhibited a distinct gene expression profile compared to their counterparts within lymph nodes. Analysis of the diverse T cell subpopulations within tumors revealed distinct functional states. For example, in regulatory and T follicular helper cells, we identified activated clusters (CD27, BATF, TNFRSF4) and putative resting clusters (SELL, KLF2, IL7R), while effector T cells resided in separate cytotoxic (GZMA, GZMB, GNLY) and exhausted (TIGIT, CXCL13, LAG3) clusters. Tumor B cell gene expression and composition of the TME from site to site within the same patient were similar in some cases and remarkably divergent in others. For example, we detected a significant upregulation of interferon signaling pathways in the tumor B cells and an enrichment of effector T cells in only one of the two sites within one patient. Analysis of B cell and T cell antigen receptor sequences to evaluate tumor subclonality and TCR clonotype diversity are ongoing. To the best of our knowledge, this is the first study to compare different sites of FL in the same patients at the single cell level. Our analyses characterize inter- and intra-patient heterogeneity in malignant and immune cell subsets and provide a baseline for eventual comparison of alterations occurring over time as these patients receive experimental immunotherapy interventions. Disclosures Levy: XCella: Membership on an entity's Board of Directors or advisory committees; Immunocore: Membership on an entity's Board of Directors or advisory committees; Walking Fish: Membership on an entity's Board of Directors or advisory committees; Five Prime: Membership on an entity's Board of Directors or advisory committees; Corvus: Membership on an entity's Board of Directors or advisory committees; Quadriga: Membership on an entity's Board of Directors or advisory committees; BeiGene: Membership on an entity's Board of Directors or advisory committees; GigaGen: Membership on an entity's Board of Directors or advisory committees; Teneobio: Membership on an entity's Board of Directors or advisory committees; Sutro: Membership on an entity's Board of Directors or advisory committees; Checkmate: Membership on an entity's Board of Directors or advisory committees; Nurix: Membership on an entity's Board of Directors or advisory committees; Dragonfly: Membership on an entity's Board of Directors or advisory committees; Innate Pharma: Membership on an entity's Board of Directors or advisory committees; Abpro: Membership on an entity's Board of Directors or advisory committees; Apexigen: Membership on an entity's Board of Directors or advisory committees; Nohla: Membership on an entity's Board of Directors or advisory committees; Spotlight: Membership on an entity's Board of Directors or advisory committees; 47 Inc: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document