Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature

Author(s):  
Craig Bolte ◽  
Jeffrey A. Whitsett ◽  
Tanya V. Kalin ◽  
Vladimir V. Kalinichenko
2007 ◽  
Vol 302 (2) ◽  
pp. 367-375 ◽  
Author(s):  
Germán Reig ◽  
María E. Cabrejos ◽  
Miguel L. Concha

2000 ◽  
Vol 14 (14) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ken-ichi Tago ◽  
Tsutomu Nakamura ◽  
Michiru Nishita ◽  
Junko Hyodo ◽  
Shin-ichi Nagai ◽  
...  

Wnt signaling has an important role in both embryonic development and tumorigenesis. β-Catenin, a key component of the Wnt signaling pathway, interacts with the TCF/LEF family of transcription factors and activates transcription of Wnt target genes. Here, we identify a novel β-catenin-interacting protein, ICAT, that was found to inhibit the interaction of β-catenin with TCF-4 and represses β-catenin–TCF-4-mediated transactivation. Furthermore, ICAT inhibited Xenopus axis formation by interfering with Wnt signaling. These results suggest that ICAT negatively regulates Wnt signaling via inhibition of the interaction between β-catenin and TCF and is integral in development and cell proliferation.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Satya Srirama Karthik Divvela ◽  
Darius Saberi ◽  
Beate Brand-Saberi

Atoh8 belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) proteins. bHLH proteins have been identified in a wide range of organisms from yeast to humans. The members of this special group of transcription factors were found to be involved not only in embryonic development but also in disease initiation and its progression. Given their importance in several fundamental processes, the translation, subcellular location and turnover of bHLH proteins is tightly regulated. Alterations in the expression of bHLH proteins have been associated with multiple diseases also in context with Atoh8 which seems to unfold its functions as both transcriptional activator and repressor. Like many other bHLH transcription factors, so far, Atoh8 has also been observed to be involved in both embryonic development and carcinogenesis where it mainly acts as tumor suppressor. This review summarizes our current understanding of Atoh8 structure, function and regulation and its complex and partially controversial involvement in development and disease.


2016 ◽  
Vol 8 ◽  
pp. JCNSD.S32204 ◽  
Author(s):  
He Liu ◽  
Ni Song

Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors.


2008 ◽  
Vol 88 (8) ◽  
pp. 865-872 ◽  
Author(s):  
Pallavi B Limaye ◽  
Gabriela Alarcón ◽  
Andrew L Walls ◽  
Michael A Nalesnik ◽  
George K Michalopoulos ◽  
...  

2020 ◽  
Author(s):  
Jingwei Yue ◽  
Xinhua Hou ◽  
Xin Liu ◽  
Ligang Wang ◽  
Hongmei Gao ◽  
...  

Abstract Background: The development of skeletal muscle during the embryonic stage in pigs is precisely regulated by transcriptional regulation, which depends on chromatin accessibility. However, how chromatin accessibility plays a regulatory role during embryonic skeletal muscle development in pigs has not been reported. To gain insight into the landscape of chromatin accessibility and the associated genome-wide transcriptome during embryonic muscle development, we performed ATAC-seq and RNA-seq on skeletal muscle of pig embryos at 45, 70 and 100 days post coitus (dpc). Results: In total, 21638, 35447 and 60181 unique regions (or peaks) were found across 45 dpc (LW45), 70 dpc (LW70) and 100 dpc (LW100) embryos, respectively. More than 91% of peaks were annotated within -1 kb to 100 bp of transcription start sites (TSSs). First, widespread increases in specific accessible chromatin regions (ACRs) from 45 to 100 dpc embryos suggested that the regulatory mechanisms became increasingly complicated during embryonic development. Second, the findings of integrated ATAC-seq and RNA-seq analyses showed that not only the numbers but also the peak intensities of ACRs could control the expression of associated genes. Finally, motif screening of stage-specific ACRs revealed some transcription factors that regulated muscle development-related genes, such as MyoD, Mef2c, Mef2d and Pax7. Several potential transcriptional repressors, including E2F6, GRHL2, OTX2 and CTCF, were identified among those genes that exhibited different change trends between the ATAC-seq and RNA-seq data. Conclusions: This work indicates that chromatin accessibility plays an important regulatory role in the embryonic muscle development of pigs and regulates the temporal and spatial expression patterns of key genes in muscle development by influencing the binding of transcription factors. Our results contribute to a better understanding of the regulatory dynamics of genes involved in pig embryonic skeletal muscle development.


2021 ◽  
Author(s):  
Jingwei Yue ◽  
Xinhua Hou ◽  
Xin Liu ◽  
Ligang Wang ◽  
Hongmei Gao ◽  
...  

Abstract Background: The development of skeletal muscle during the embryonic stage in pigs is precisely regulated by transcriptional mechanisms, which depends on chromatin accessibility. However, the landscape of chromatin accessibility in skeletal muscle during embryonic development in pigs has not been reported. To gain insight into the landscape of chromatin accessibility and the associated genome-wide transcriptome during embryonic muscle development, we performed ATAC-seq and RNA-seq on skeletal muscle of pig embryos at 45, 70 and 100 days post coitus (dpc).Results: In total, 21638, 35447 and 60181 unique regions (or peaks) were found across 45 dpc (LW45), 70 dpc (LW70) and 100 dpc (LW100) embryos, respectively. More than 91% of peaks were annotated within -1 kb to 100 bp of transcription start sites (TSSs). First, widespread increases in specific accessible chromatin regions (ACRs) from 45 to 100 dpc embryos suggested that the regulatory mechanisms became increasingly complicated during embryonic development. Second, the findings of integrated ATAC-seq and RNA-seq analyses showed that not only the numbers but also the peak intensities of ACRs could control the expression of associated genes. Finally, motif screening of stage-specific ACRs revealed some transcription factors that regulated muscle development-related genes, such as MyoD, Mef2c, and Mef2d. Motif screening of DPI of common peaks detected that a potential transcriptional repressor, namely CTCF, was identified among those genes that exhibited different change trends between the ATAC-seq and RNA-seq data.Conclusions: This work indicates that chromatin accessibility plays an important regulatory role in the embryonic muscle development of pigs and regulates the temporal and spatial expression patterns of key genes in muscle development by influencing the binding of transcription factors. Our results contribute to a better understanding of the regulatory dynamics of genes involved in pig embryonic skeletal muscle development.


Author(s):  
Joana Esteves de Lima ◽  
Reem Bou Akar ◽  
Myriam Mansour ◽  
Didier Rocancourt ◽  
Margaret Buckingham ◽  
...  

PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. Pax3-mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate. Here we show that in Pax3-mutant embryos, myotome formation is impaired, displays a defective basal lamina and the regionalization of the structural protein Desmin is lost. In addition, this phenotype is more severe in embryos combining Pax3-null and Pax3 dominant-negative alleles. We identify the adhesion molecule M-Cadherin as a PAX3 target gene, the expression of which is modulated in the myotome according to Pax3 gain- and loss-of-function alleles analyzed. Taken together, we identify M-Cadherin as a PAX3-target linked to the formation of the myotome.


Sign in / Sign up

Export Citation Format

Share Document