A Machine Learning Inspired Approach for Detection, Recognition and Tracking of Moving Objects from Real-Time Video

Author(s):  
Anit Chakrabory ◽  
Sayandip Dutta
Author(s):  
Shobha Rani

The main purpose of paper is to find riders who neglect road safety, which leads to accidents and death. Thus most of the countries mandate the use of the helmets for two-wheeler riders. In order to discourage this behavior police force has been made for traffic to issue violation ticket. This process will be done manual, time consuming and very tedious. Hence proposed system will detect riders who wear the helmet while riding the motor vehicle and helps in finding riders without helmet to get imposed with fine. The system implements machine learning and image processing techniques to detect riders, riding two-wheeler, who are wearing helmets. The system takes a video of real time as the input and detects moving objects in the scene. The SIFT and SURF algorithm is used for detecting the helmet in the real time video, surf is faster than the sift algorithm in the machine learning and it is more efficient to detect the helmet object. Further, practically can be implemented in traffic intersections to monitor the rider’s safety by detecting helmet.


The machine vision systems have been playing a significant role in visual monitoring systems. With the help of stereovision and machine learning, it will be able to mimic human-like visual system and behaviour towards the environment. In this paper, we present a stereo vision based 3-DOF robot which will be used to monitor places from remote using cloud server and internet devices. The 3-DOF robot will transmit human-like head movements, i.e., yaw, pitch, roll and produce 3D stereoscopic video and stream it in Real-time. This video stream is sent to the user through any generic internet devices with VR box support, i.e., smartphones giving the user a First-person real-time 3D experience and transfers the head motion of the user to the robot also in Real-time. The robot will also be able to track moving objects and faces as a target using deep neural networks which enables it to be a standalone monitoring robot. The user will be able to choose specific subjects to monitor in a space. The stereovision enables us to track the depth information of different objects detected and will be used to track human interest objects with its distances and sent to the cloud. A full working prototype is developed which showcases the capabilities of a monitoring system based on stereo vision, robotics, and machine learning.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 679-689
Author(s):  
CYDNEY RECHTIN ◽  
CHITTA RANJAN ◽  
ANTHONY LEWIS ◽  
BETH ANN ZARKO

Packaging manufacturers are challenged to achieve consistent strength targets and maximize production while reducing costs through smarter fiber utilization, chemical optimization, energy reduction, and more. With innovative instrumentation readily accessible, mills are collecting vast amounts of data that provide them with ever increasing visibility into their processes. Turning this visibility into actionable insight is key to successfully exceeding customer expectations and reducing costs. Predictive analytics supported by machine learning can provide real-time quality measures that remain robust and accurate in the face of changing machine conditions. These adaptive quality “soft sensors” allow for more informed, on-the-fly process changes; fast change detection; and process control optimization without requiring periodic model tuning. The use of predictive modeling in the paper industry has increased in recent years; however, little attention has been given to packaging finished quality. The use of machine learning to maintain prediction relevancy under everchanging machine conditions is novel. In this paper, we demonstrate the process of establishing real-time, adaptive quality predictions in an industry focused on reel-to-reel quality control, and we discuss the value created through the availability and use of real-time critical quality.


2016 ◽  
Vol 11 (4) ◽  
pp. 324
Author(s):  
Nor Nadirah Abdul Aziz ◽  
Yasir Mohd Mustafah ◽  
Amelia Wong Azman ◽  
Amir Akramin Shafie ◽  
Muhammad Izad Yusoff ◽  
...  

2019 ◽  
Author(s):  
Hironori Takemoto ◽  
Tsubasa Goto ◽  
Yuya Hagihara ◽  
Sayaka Hamanaka ◽  
Tatsuya Kitamura ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


2020 ◽  
Vol 17 (4) ◽  
pp. 2007-2023
Author(s):  
Sarah Wassermann ◽  
Michael Seufert ◽  
Pedro Casas ◽  
Li Gang ◽  
Kuang Li

Sign in / Sign up

Export Citation Format

Share Document