Land Use Land Cover Mapping of Borj Touil (Northern Tunisia) Irrigated District with Reclaimed Water Using Landsat-8 and Sentinel-2 Satellite Images

Author(s):  
Asma Bettaibi ◽  
Makram Anane ◽  
Karim Ergaieg
Author(s):  
A. Sekertekin ◽  
A. M. Marangoz ◽  
H. Akcin

The aim of this study is to conduct accuracy analyses of Land Use Land Cover (LULC) classifications derived from Sentinel-2 and Landsat-8 data, and to reveal which dataset present better accuracy results. Zonguldak city and its near surrounding was selected as study area for this case study. Sentinel-2 Multispectral Instrument (MSI) and Landsat-8 the Operational Land Imager (OLI) data, acquired on 6 April 2016 and 3 April 2016 respectively, were utilized as satellite imagery in the study. The RGB and NIR bands of Sentinel-2 and Landsat-8 were used for classification and comparison. Pan-sharpening process was carried out for Landsat-8 data before classification because the spatial resolution of Landsat-8 (30m) is far from Sentinel-2 RGB and NIR bands (10m). LULC images were generated using pixel-based Maximum Likelihood (MLC) supervised classification method. As a result of the accuracy assessment, kappa statistics for Sentinel-2 and Landsat-8 data were 0.78 and 0.85 respectively. The obtained results showed that Sentinel-2 MSI presents more satisfying LULC images than Landsat-8 OLI data. However, in some areas of Sea class Landsat-8 presented better results than Sentinel-2.


Author(s):  
A. Jamali ◽  
A. Abdul Rahman

Abstract. For environmental monitoring, land-cover mapping, and urban planning, remote sensing is an effective method. In this paper, firstly, for land use land cover mapping, Landsat 8 OLI image classification based on six advanced mathematical algorithms of machine learning including Random Forest, Decision Table, DTNB, Multilayer Perceptron, Non-Nested Generalized Exemplars (NN ge) and Simple Logistic is used. Then, results are compared in the terms of Overall Accuracy (OA), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for land use land cover (LULC) mapping. Based on the training and test datasets, Simple Logistic had the best performance in terms of OA, MAE and RMSE values of 99.9293, 0.0006 and 0.016 for training dataset and values of 99.9467, 0.0005 and 0.0153 for the test dataset.


2017 ◽  
Vol 55 (3) ◽  
pp. 331-354 ◽  
Author(s):  
Gerald Forkuor ◽  
Kangbeni Dimobe ◽  
Idriss Serme ◽  
Jerome Ebagnerin Tondoh

2019 ◽  
Vol 3 (1) ◽  
pp. 14-27
Author(s):  
Barry Haack ◽  
Ron Mahabir

This analysis determined the best individual band and combinations of various numbers of bands for land use land cover mapping for three sites in Peru. The data included Landsat Thematic Mapper (TM) optical data, PALSAR L-band dual-polarized radar, and derived radar texture images. Spectral signatures were first obtained for each site class and separability between classes determined using divergence measures. Results show that the best single band for analysis was a TM band, which was different for each site. For two of the three sites, the second best band was a radar texture image from a large window size. For all sites the best three bands included two TM bands and a radar texture image. The original PALSAR bands were of limited value. Finally upon further analysis it was determined that no more than six bands were needed for viable classification at each study site.


Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


2018 ◽  
Vol 10 (10) ◽  
pp. 3421 ◽  
Author(s):  
Rahel Hamad ◽  
Heiko Balzter ◽  
Kamal Kolo

Multi-temporal Landsat images from Landsat 5 Thematic Mapper (TM) acquired in 1993, 1998, 2003 and 2008 and Landsat 8 Operational Land Imager (OLI) from 2017, are used for analysing and predicting the spatio-temporal distributions of land use/land cover (LULC) categories in the Halgurd-Sakran Core Zone (HSCZ) of the National Park in the Kurdistan region of Iraq. The aim of this article was to explore the LULC dynamics in the HSCZ to assess where LULC changes are expected to occur under two different business-as-usual (BAU) assumptions. Two scenarios have been assumed in the present study. The first scenario, addresses the BAU assumption to show what would happen if the past trend in 1993–1998–2003 has continued until 2023 under continuing the United Nations (UN) sanctions against Iraq and particularly Kurdistan region, which extended from 1990 to 2003. Whereas, the second scenario represents the BAU assumption to show what would happen if the past trend in 2003–2008–2017 has to continue until 2023, viz. after the end of UN sanctions. Future land use changes are simulated to the year 2023 using a Cellular Automata (CA)-Markov chain model under two different scenarios (Iraq under siege and Iraq after siege). Four LULC classes were classified from Landsat using Random Forest (RF). Their accuracy was evaluated using κ and overall accuracy. The CA-Markov chain method in TerrSet is applied based on the past trends of the land use changes from 1993 to 1998 for the first scenario and from 2003 to 2008 for the second scenario. Based on this model, predicted land use maps for the 2023 are generated. Changes between two BAU scenarios under two different conditions have been quantitatively as well as spatially analysed. Overall, the results suggest a trend towards stable and homogeneous areas in the next 6 years as shown in the second scenario. This situation will have positive implication on the park.


Sign in / Sign up

Export Citation Format

Share Document