Bioprotection of Soybean Plants from Drought Stress by Application of Bacterial and Fungal Endophytes

2018 ◽  
pp. 281-301
Author(s):  
Dipanti Chourasiya ◽  
Richa Agnihotri ◽  
Anil Prakash ◽  
Kamal K. Pal ◽  
Mahaveer P. Sharma
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamed S. Sheteiwy ◽  
Dina Fathi Ismail Ali ◽  
You-Cai Xiong ◽  
Marian Brestic ◽  
Milan Skalicky ◽  
...  

Abstract Background The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). Results Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. Conclusions The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


2004 ◽  
Vol 161 (11) ◽  
pp. 1211-1224 ◽  
Author(s):  
J.A. De Ronde ◽  
W.A. Cress ◽  
G.H.J. Krüger ◽  
R.J. Strasser ◽  
J. Van Staden

Author(s):  
Md Atikur Rahman ◽  
Iftekhar Alam ◽  
Shamima Akhtar Sharmin ◽  
Ahmad Humayan Kabir ◽  
Yong-Goo Kim ◽  
...  

2018 ◽  
Vol 219 (3) ◽  
pp. 1075-1084 ◽  
Author(s):  
Brittany R. Cavazos ◽  
Teresa F. Bohner ◽  
Marion L. Donald ◽  
Michelle E. Sneck ◽  
Alan Shadow ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 877
Author(s):  
Mustafa Morsy ◽  
Blake Cleckler ◽  
Hayden Armuelles-Millican

In a search for efficient fungal endophytes that can promote crop production and/or increase crop tolerance to abiotic stress, we isolated and tested various species harbored by wild plants. Sixty-seven endophytic fungal isolates were obtained from drought stressed, poor soil habitats, and inland high salt areas. We extensively tested the roles of Ampelomyces sp. and Penicillium sp. isolates in improving tomato growth and yield. Under greenhouse and field trails, Ampelomyces sp. and Penicillium sp. endophytes proved effective in conferring positive benefits to tomatoes placed under stress as well as under normal growing conditions. Ampelomyces sp. conferred tolerance to tomatoes placed under drought stress in addition to enhancing overall plant growth and fruit yield in comparison to non-symbiotic plants under drought stress. Penicillium sp. conferred tolerance to tomatoes placed under 300 mM salinity stress in addition to enhancing root biomass in comparison to non-symbiotic plants. Both endophytes proved efficient in enhancing plant growth, stress tolerance, recovery, and fruit yield under optimal experimental conditions in comparison to non-symbiotic plants. Field testing of tomato yield showed increased yield of symbiotic tomatoes compared to non-symbiotic ones. This data suggests that both Ampelomyces sp. and Penicillium sp. share a promising potential for improving future agricultural production, particularly with the projected changes in climate in the future.


Botany ◽  
2012 ◽  
Vol 90 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Michelle Hubbard ◽  
James Germida ◽  
Vladimir Vujanovic

Seed germination is a critical life stage for plants survival and timely seedling establishment especially in stressful environments. We hypothesized that fungal endophytes would improve wheat seed germination under heat and drought stress. The hydrothermal time (HTT) model of germination is a conceptual model useful for predicting the timing and energy of germination (EG) under a given set of conditions. The HTT and EG are applied, for the first time, to determine if one or more compatible endophytic fungi enhance heat or drought tolerance in wheat. Fungal endophytes tested dramatically increased the percent of germination, improved EG and HTT values, and diminished wheat susceptibility to heat and drought as measured by fresh weight of seedlings. When colonized by the most effective fungal endophyte, the values of the parameters tested in wheat seeds exposed to heat stress resembled those of unstressed seeds.


Author(s):  
Thi Thanh Nhan Pham ◽  
Huu Quan Nguyen ◽  
Thi Ngoc Lan Nguyen ◽  
Xuan Tan Dao ◽  
Danh Thuong Sy ◽  
...  

The dehydration responsive element binding (DREB) is a plant protein subfamily expressed when soybean plants face abiotic stresses. These DREB proteins are also considered to activate the transcription of drought-resistant genes. In this study, we present the determined results of relationships between overexpression of Glycine max DREB2 (GmDREB2) with the transcription level of Glycine max pyrroline-5-carboxylate synthetase (GmP5CS) gene, proline accumulation and drought tolerant ability transgenic soybean plants as the basis for selection of transgenic lines with high drought tolerance. GmDREB2 was inserted into a plant transgenic vector and the 35S-GmDREB2-cmyc construct was transferred into the soybean plants by Agrobacterium-mediated transformation. Recombinant GmDREB2 protein with a molecular weight of approximately 20 kDa was expressed in four transgenic soybean lines in the T1 generation. The GmP5CS gene was shown to have significantly (P<0.05) increased expression in the T2 transgenic soybean lines and higher than compared to non-transgenic plants with considering both in well watered condition and stressed conditions were from 1.06 to 1.31-fold and 1.37 to 1.95-fold, respectively. The proline content of four transgenic soybean lines increased 155.81% to 187.42 % after five days in drought-stress conditions and increased from 180.52 % to 233.74 % after nine days under drought-stress conditions (P<0.05). Therefore, the overexpression of GmDREB2 resulted in increasing transcription level of P5CS gene, proline accumulation and drought-stress tolerance of the transgenic soybean plants. The GmDREB2 transformation into soybean plants was confirmed by the results of genetically modified lines in the T2 generation (T2-1, T2-6, T2-7, and T2-8) with higher drought tolerant ability than those of non-transgenic plants.


Sign in / Sign up

Export Citation Format

Share Document