Trade-offs and Synergies in the Structural and Functional Characteristics of Leaves Photosynthesizing in Aquatic Environments

Author(s):  
Stephen Christopher Maberly ◽  
Brigitte Gontero
2018 ◽  
Vol 373 (1751) ◽  
pp. 20170202 ◽  
Author(s):  
Donald C. Behringer ◽  
Anssi Karvonen ◽  
Jamie Bojko

Parasites, including macroparasites, protists, fungi, bacteria and viruses, can impose a heavy burden upon host animals. However, hosts are not without defences. One aspect of host defence, behavioural avoidance, has been studied in the terrestrial realm for over 50 years, but was first reported from the aquatic environment approximately 20 years ago. Evidence has mounted on the importance of parasite avoidance behaviours and it is increasingly apparent that there are core similarities in the function and benefit of this defence mechanism between terrestrial and aquatic systems. However, there are also stark differences driven by the unique biotic and abiotic characteristics of terrestrial and aquatic (marine and freshwater) environments. Here, we review avoidance behaviours in a comparative framework and highlight the characteristics of each environment that drive differences in the suite of mechanisms and cues that animals use to avoid parasites. We then explore trade-offs, potential negative effects of avoidance behaviour and the influence of human activities on avoidance behaviours. We conclude that avoidance behaviours are understudied in aquatic environments but can have significant implications for disease ecology and epidemiology, especially considering the accelerating emergence and re-emergence of parasites. This article is part of the Theo Murphy meeting issue ‘Evolution of pathogen and parasite avoidance behaviours'.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
George C. Adamidis ◽  
Ralph V. Cartar ◽  
Andony P. Melathopoulos ◽  
Stephen F. Pernal ◽  
Shelley E. Hoover

Abstract Insect pollination of flowers should change the within-season allocation of resources in plants. But the nature of this life-history response, particularly regarding allocation to roots, photosynthetic structures, and flowers, is empirically unresolved. This study uses a greenhouse experiment to investigate the effect of insect pollination on the reproductive output of 23 varieties of a globally important crop—canola (Brassica napus). Overall, insect pollination modified the functional characteristics (flower timing & effort, plant size & shape, seed packaging, root biomass) of canola, increasing seed production and quality, and pollinator dependence. Reproductive output and pollinator dependence were defined by strong trait trade-offs, which ranged from more pollinator-dependent plants favouring early reproductive effort, to less pollinator-dependent plants favouring a prolonged phenology with smaller plant size and lower seed quality. Seed production decreased with pollinator dependence in the absence of pollinators. The agricultural preference for hybrid varieties will increase seed production compared to open-pollinated varieties, but, even so, pollinators typically enhance seed production of both types. Our study elucidates how insect pollination alters the character and function of a globally important crop, supporting optimization of yield via intensification of insect pollination, and highlights the beneficial effects of insect pollination early in the season.


2020 ◽  
Author(s):  
Kate A. Berry ◽  
Juan Pablo Muñoz-Pérez ◽  
Cristina P. Vintimilla-Palacios ◽  
Christofer J. Clemente

AbstractReptiles have repeatedly invaded and thrived in aquatic environments throughout history, however fewer than 8% of the 6000 extant species are primarily aquatic. The Galápagos Marine Iguana (Amblyrhynchus cristatus), the world’s only marine lizard, may have had one of the most unique and challenging transitions to aquatic life. Curiously, previous studies have identified relatively few physiological adaptations in Marine Iguanas, however, little is known about the extent of morphological specialisation and performance trade-offs associated with the marine environment. By examining the morphology and locomotory performance of the Marine Iguana in comparison to their closely related mainland ancestors, the Black Spiny-tailed iguana (Ctenosaura similis) and Green Iguana (Iguana iguana), we found variation reflected specialisation to ecological niches. However, variation was more pronounced among subspecies of Marine Iguana, suggesting that little morphological or performance modification is required for iguanids to successfully invade aquatic environments, thus raising the question why there are so few extant aquatic reptilian lineages. We found that specialisation for the marine environment resulted in a trade-off in sprint speed in a terrestrial environment, similar to that seen in extant crocodilians. Reduced performance in a terrestrial environment likely poses little risk to large-bodied apex predators, whereas in iguanids, a performance trade-off would likely incur increased predation. As such, we suggest that this may explain why iguanids and other ancestral lineages have not undergone transitions to aquatic life. Additionally, we found that the magnitude of morphological and performance variation was more pronounced between subspecies of Marine Iguana than between iguanid species.Summary StatementThe Marine Iguana has undergone a unique evolutionary transition to aquatic behaviour, we explore the extent of morphological and performance specialisation required and why there are so few extant marine reptiles.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


2007 ◽  
Vol 62 (9) ◽  
pp. 1073-1074 ◽  
Author(s):  
Kennon M. Sheldon ◽  
Melanie S. Sheldon ◽  
Charles P. Nichols

Sign in / Sign up

Export Citation Format

Share Document