Amplitude Amplification for Operator Identification and Randomized Classes

Author(s):  
Debajyoti Bera
2013 ◽  
Vol 12 (1) ◽  
pp. 1-19
Author(s):  
Niklas Grip ◽  
Götz E. Pfander ◽  
Peter Rashkov

2010 ◽  
Vol 08 (06) ◽  
pp. 923-935 ◽  
Author(s):  
CÉSAR BAUTISTA-RAMOS ◽  
NORA CASTILLO-TÉPOX

The iteration of the operators employed in quantum amplitude amplification with generalized phases is analyzed by using elementary properties (geometric and algebraic) of the Möbius transformations (fractional linear transformations). It is shown that, for a given quantum algorithm without measurement, which produces a good state with probability a of success, if the phase angles φ and ϕ which mark the good and initial states respectively satisfy φ = ϕ with a small enough, then, for a number n of iterations with [Formula: see text] we get an error probability that is at most O(aϕ2).


2012 ◽  
Vol 579 ◽  
pp. 357-364
Author(s):  
Kuen Ming Shu ◽  
Wen Hsiang Hsieh ◽  
Yu Guang Li ◽  
Chi Wei Chi ◽  
Yi Shen Li

Solar panels conduct electricity through aluminum strips on substrate surfaces. Ultrasonic roll welding can weld the conductive aluminum strips onto the glass substrates. This paper illustrates vibration characteristics and optimal design of amplitude horns used in the ultrasonic welding roll. Based on theoretical equations, this study used the ANSYS software to establish the parametric model according to design requirements. With the parametric model as the initial design, this study conducted modal analysis and harmonic analysis to obtain the vertical mode and disc bending mode of the horn, and measured the resonant frequency, amplitude amplification rate and stress distribution. Finally, this study implemented and verified the optimal coupled disc tool of the ultrasonic horn.


Author(s):  
David Hemberger ◽  
Dietmar Filsinger ◽  
Hans-Jörg Bauer

The production of bladed structures, e.g. turbine and compressor wheels, is a subject of statistical scatter. The blades are designed to be identical but differ due to small manufacturing tolerances. This so called mistuning can lead to increased vibration amplitudes compared to the ideal tuned case. The object of this study is to create and validate numerical models to evaluate such mistuning effects of turbine wheels for automotive turbocharger applications. As a basis for the numerical analysis vibration measurements under stand-still conditions were carried out by using a laser surface velocimeter (LSV). The scope of this investigation was to identify the mistuning properties of the turbine wheels namely the frequency deviation from the ideal, cyclic symmetrical tuned system. Experimental modal analyses as well as blade by blade measurements were performed. Moreover 3D scanning techniques were employed to determine geometric deviations. Numerical FE models and a simplified multi degree of freedom model (EBM) were created to reproduce the measured mistuning effects. The prediction of mode localization and the calculated amplitude amplification were evaluated. The best results were obtained with a FE model that employs individual sectorial stiffnesses. The results also indicate that the major contribution to mistuning is made by material inhomogeneities and not by geometric deviations from ideal dimensions. With the adjusted FE model a probabilistic study has been performed to investigate the influence of the mistuning on the amplitude amplification factor. It has been found that at a certain level of mistuning the amplification factor remains constant or slightly decreases. By introducing intentional mistuning a lower sensitivity as well as a decrease of the amplitude amplification could be achieved.


1980 ◽  
Vol 2 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Amin Hanafy ◽  
Mauro Zambuto

A two-step real time acoustic imaging system is presented. The system incorporates a novel acoustic image coupler which transfers an acoustical interference pattern from a water-bounded to an air-bounded surface with vibration amplitude amplification. An original technique termed step-biased real time holographic interferometry is used to convert the amplified mechanical vibration pattern, which carries all information about the insonified object, into a visual image with improved sensitivity.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-37
Author(s):  
Almudena Carrera Vazquez ◽  
Ralf Hiptmair ◽  
Stefan Woerner

We present a quantum algorithm to solve systems of linear equations of the form Ax = b , where A is a tridiagonal Toeplitz matrix and b results from discretizing an analytic function, with a circuit complexity of O (1/√ε, poly (log κ, log N )), where N denotes the number of equations, ε is the accuracy, and κ the condition number. The repeat-until-success algorithm has to be run O (κ/(1-ε)) times to succeed, leveraging amplitude amplification, and needs to be sampled O (1/ε 2 ) times. Thus, the algorithm achieves an exponential improvement with respect to N over classical methods. In particular, we present efficient oracles for state preparation, Hamiltonian simulation, and a set of observables together with the corresponding error and complexity analyses. As the main result of this work, we show how to use Richardson extrapolation to enhance Hamiltonian simulation, resulting in an implementation of Quantum Phase Estimation (QPE) within the algorithm with 1/√ε circuits that can be run in parallel each with circuit complexity 1/√ ε instead of 1/ε. Furthermore, we analyze necessary conditions for the overall algorithm to achieve an exponential speedup compared to classical methods. Our approach is not limited to the considered setting and can be applied to more general problems where Hamiltonian simulation is approximated via product formulae, although our theoretical results would need to be extended accordingly. All the procedures presented are implemented with Qiskit and tested for small systems using classical simulation as well as using real quantum devices available through the IBM Quantum Experience.


Grover’s quantum search algorithm allows quadratic speedup in unsorted search problem by utilizing amplitude amplification trick in quantum computing. In this paper, an approach to implement Grover’s quantum search algorithm is proposed. The implementation is done using Rigetti Forest and Python. The testing and evaluation processes are carried on in two computers with different hardware specifications to derive more information from the result. The results are measured in user time and compared with implementation from Quantum Computing Playground. The user time of this implementation for 10 qubits and 1024 data is slower compared to Quantum Computing Playground’s implementation. The proposed implementation can be improved by calculating the probability of Grover’s quantum search algorithm in finding the appropriate search result.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 361
Author(s):  
Lin Lin ◽  
Yu Tong

We present a quantum eigenstate filtering algorithm based on quantum signal processing (QSP) and minimax polynomials. The algorithm allows us to efficiently prepare a target eigenstate of a given Hamiltonian, if we have access to an initial state with non-trivial overlap with the target eigenstate and have a reasonable lower bound for the spectral gap. We apply this algorithm to the quantum linear system problem (QLSP), and present two algorithms based on quantum adiabatic computing (AQC) and quantum Zeno effect respectively. Both algorithms prepare the final solution as a pure state, and achieves the near optimal O~(dκlog⁡(1/ϵ)) query complexity for a d-sparse matrix, where κ is the condition number, and ϵ is the desired precision. Neither algorithm uses phase estimation or amplitude amplification.


1984 ◽  
Vol 36 (6) ◽  
pp. 1000-1020 ◽  
Author(s):  
William H. Graves ◽  
Wolfgang Ruess

This paper features strong and weak compactness in spaces of vector measures with relatively compact ranges in Banach spaces. Its tools are the measure-operator identification of [16] and [24] and the description of strong and weak compactness in spaces of compact operators in [10], [11], and [29].Given a Banach space X and an algebra of sets, it is shown in [16] that under the usual identification via integration of X-valued bounded additive measures on with X-valued sup norm continuous linear operators on the space of -simple scalar functions, the strongly bounded, countably additive measures correspond exactly to those operators which are continuous for the coarser (locally convex) universal measure topology τ on . It is through the latter identification that the results on strong and weak compactness in [10], [11], and [29] can be applied to X-valued continuous linear operators on the generalized DF space to yield results on strong and weak compactness in spaces of vector measures.


2013 ◽  
Vol 416-417 ◽  
pp. 925-930 ◽  
Author(s):  
Yong Li ◽  
Fei Xu ◽  
Jian Hui Hu ◽  
Ji Bin Zou ◽  
Kai Liu

Orbital Friction Vibration Actuator (OFVA) is a core component of Orbital Friction Welding (OFW), which is a novel apertureless welding technology utilizing friction heat to implement solid-state. By taking advantage of the special electromagnetic structure, OFVA can produce a contactless, radial, synchronous and rotating force with adjustable amplitude and phase upon the still mover which then vibrate according to the predetermined orbital. This paper analyzes the operational principle and structure of OFVA and conducts a mathematical analysis for a core issue about how to make the motion component of the OFVA generate circular moving trajectories. Vibration characteristic of are analyzed and the expressions of amplitude amplification factors as the moving component is moving in a circle are derived. Simulations are carried out to validate the theoretical analysis, which proved that the design was correct and engineering practical.


Sign in / Sign up

Export Citation Format

Share Document