Gene Family Evolution in Allium Species

Author(s):  
Jiffinvir Khosa ◽  
Robyn Lee ◽  
John McCallum ◽  
Richard Macknight
Author(s):  
Andrew W Legan ◽  
Christopher M Jernigan ◽  
Sara E Miller ◽  
Matthieu F Fuchs ◽  
Michael J Sheehan

Abstract Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here we describe odorant receptor gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (d  N/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Peng Jin ◽  
Shiqi Gao ◽  
Long He ◽  
Miaoze Xu ◽  
Tianye Zhang ◽  
...  

Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticumaestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivumHDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.


2019 ◽  
Vol 55 (1) ◽  
pp. 100-112 ◽  
Author(s):  
Yuxin Hu ◽  
Weiyue Xing ◽  
Huiyin Song ◽  
Zhengyu Hu ◽  
Guoxiang Liu

2021 ◽  
Author(s):  
Kim Vertacnik ◽  
Danielle Herrig ◽  
R Keating Godfrey ◽  
Tom Hill ◽  
Scott Geib ◽  
...  

A central goal in evolutionary biology is to determine the predictability of adaptive genetic changes. Despite many documented cases of convergent evolution at individual loci, little is known about the repeatability of gene family expansions and contractions. To address this void, we examined gene family evolution in the redheaded pine sawfly Neodiprion lecontei, a non-eusocial hymenopteran and exemplar of a pine-specialized lineage evolved from angiosperm-feeding ancestors. After assembling and annotating a draft genome, we manually annotated multiple gene families with chemosensory, detoxification, or immunity functions and characterized their genomic distributions and evolutionary history. Our results suggest that expansions of bitter gustatory receptor (GR), clan 3 cytochrome P450 (CYP3), and antimicrobial peptide (AMP) subfamilies may have contributed to pine adaptation. By contrast, there was no evidence of recent gene family contraction via pseudogenization. Next, we compared the number of genes in these same families across insect taxa that vary in diet, dietary specialization, and social behavior. In Hymenoptera, herbivory was associated with large GR and small olfactory receptor (OR) families, eusociality was associated with large OR and small AMP families, and--unlike investigations among more closely related taxa--ecological specialization was not related to gene family size. Overall, our results suggest that gene families that mediate ecological interactions may expand and contract predictably in response to particular selection pressures, however, the ecological drivers and temporal pace of gene gain and loss likely varies considerably across gene families.


2000 ◽  
pp. 93-113 ◽  
Author(s):  
Lars Rask ◽  
Erik Andréasson ◽  
Barbara Ekbom ◽  
Susanna Eriksson ◽  
Bo Pontoppidan ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 701 ◽  
Author(s):  
Wang ◽  
Li ◽  
Zheng ◽  
Zhu ◽  
Ma ◽  
...  

Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases. These plant-specific laccases may have better potential for industrial purposes. The aim of this work was to conduct a genome-wide search for the soybean laccase genes and analyze their characteristics and specific functions. A total of 93 putative laccase genes (GmLac) were identified from the soybean genome. All 93 GmLac enzymes contain three typical Cu-oxidase domains, and they were classified into five groups based on phylogenetic analysis. Although adjacent members on the tree showed highly similar exon/intron organization and motif composition, there were differences among the members within a class for both conserved and differentiated functions. Based on the expression patterns, some members of laccase were expressed in specific tissues/organs, while some exhibited a constitutive expression pattern. Analysis of the transcriptome revealed that some laccase genes might be involved in providing resistance to oomycetes. Analysis of the selective pressures acting on the laccase gene family in the process of soybean domestication revealed that 10 genes could have been under artificial selection during the domestication process. Four of these genes may have contributed to the transition of the soft and thin stem of wild soybean species into strong, thick, and erect stems of the cultivated soybean species. Our study provides a foundation for future functional studies of the soybean laccase gene family.


2006 ◽  
Vol 19 (3) ◽  
pp. 288-303 ◽  
Author(s):  
Brett C. Couch ◽  
Russ Spangler ◽  
Christine Ramos ◽  
Georgiana May

We sampled 384 sequences related to the Solanum pimpinel-lifolium (=Lycopersicon pimpinellifolium) disease resistance (R) gene I2 from six species, potato, S. demissum, tomato, eggplant, pepper, and tobacco. These species represent increasing phylogenetic distance from potato to tobacco, within the family Solanaceae. Using sequence data from the nucleotide binding site (NBS) region of this gene, we tested models of gene family evolution and inferred patterns of selection acting on the NBS gene region and I2 gene family. We find that the I2 family has diversified within the family Solanaceae for at least 14 million years and evolves through a slow birth-and-death process requiring approximately 12 million years to homogenize gene copies within a species. Analyses of selection resolved a general pattern of strong purifying selection acting on individual codon positions within the NBS and on NBS lineages through time. Surprisingly, we find nine codon positions strongly affected by positive selection and six pairs of codon positions demonstrating correlated amino acid substitutions. Evolutionary analyses serve as bioinformatic tools with which to sort through the vast R gene diversity in plants and find candidates for new resistance specificities or to identify specific amino acid positions important for biochemical function. The slow birth-and-death evolution of I2 genes suggests that some NBS-leucine rich repeat-mediated resistances may not be overcome rapidly by virulence evolution and that the natural diversity of R genes is a potentially valuable source for durable resistance.


Sign in / Sign up

Export Citation Format

Share Document