scholarly journals Data Sources

Author(s):  
Pieter Kubben

AbstractThere are many sources that relevant data for clinical data science can originate from. The brief overview in this chapter highlights the most frequent sources, but is definitely not exhaustive. The goal of this chapter is to provide an introduction to the most common data sources and to familiarize the reader with basic terminology in this context, in order to more easily understand discussions in next chapters and in literature in general.

2020 ◽  
Author(s):  
Bankole Olatosi ◽  
Jiajia Zhang ◽  
Sharon Weissman ◽  
Zhenlong Li ◽  
Jianjun Hu ◽  
...  

BACKGROUND The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) remains a serious global pandemic. Currently, all age groups are at risk for infection but the elderly and persons with underlying health conditions are at higher risk of severe complications. In the United States (US), the pandemic curve is rapidly changing with over 6,786,352 cases and 199,024 deaths reported. South Carolina (SC) as of 9/21/2020 reported 138,624 cases and 3,212 deaths across the state. OBJECTIVE The growing availability of COVID-19 data provides a basis for deploying Big Data science to leverage multitudinal and multimodal data sources for incremental learning. Doing this requires the acquisition and collation of multiple data sources at the individual and county level. METHODS The population for the comprehensive database comes from statewide COVID-19 testing surveillance data (March 2020- till present) for all SC COVID-19 patients (N≈140,000). This project will 1) connect multiple partner data sources for prediction and intelligence gathering, 2) build a REDCap database that links de-identified multitudinal and multimodal data sources useful for machine learning and deep learning algorithms to enable further studies. Additional data will include hospital based COVID-19 patient registries, Health Sciences South Carolina (HSSC) data, data from the office of Revenue and Fiscal Affairs (RFA), and Area Health Resource Files (AHRF). RESULTS The project was funded as of June 2020 by the National Institutes for Health. CONCLUSIONS The development of such a linked and integrated database will allow for the identification of important predictors of short- and long-term clinical outcomes for SC COVID-19 patients using data science.


2012 ◽  
Vol 214 (5) ◽  
pp. 798-805 ◽  
Author(s):  
Colleen G. Koch ◽  
Liang Li ◽  
Eric Hixson ◽  
Anne Tang ◽  
Shannon Phillips ◽  
...  

2017 ◽  
Vol 26 (01) ◽  
pp. 59-67 ◽  
Author(s):  
P. J. Scott ◽  
M. Rigby ◽  
E. Ammenwerth ◽  
J. McNair ◽  
A. Georgiou ◽  
...  

Summary Objectives: To set the scientific context and then suggest principles for an evidence-based approach to secondary uses of clinical data, covering both evaluation of the secondary uses of data and evaluation of health systems and services based upon secondary uses of data. Method: Working Group review of selected literature and policy approaches. Results: We present important considerations in the evaluation of secondary uses of clinical data from the angles of governance and trust, theory, semantics, and policy. We make the case for a multi-level and multi-factorial approach to the evaluation of secondary uses of clinical data and describe a methodological framework for best practice. We emphasise the importance of evaluating the governance of secondary uses of health data in maintaining trust, which is essential for such uses. We also offer examples of the re-use of routine health data to demonstrate how it can support evaluation of clinical performance and optimize health IT system design. Conclusions: Great expectations are resting upon “Big Data” and innovative analytics. However, to build and maintain public trust, improve data reliability, and assure the validity of analytic inferences, there must be independent and transparent evaluation. A mature and evidence-based approach needs not merely data science, but must be guided by the broader concerns of applied health informatics.


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161135 ◽  
Author(s):  
Julio Montes-Torres ◽  
José Luis Subirats ◽  
Nuria Ribelles ◽  
Daniel Urda ◽  
Leonardo Franco ◽  
...  

2020 ◽  
pp. 137-161
Author(s):  
Juan Luis Cruz ◽  
Mariano Provencio ◽  
Ernestina Menasalvas
Keyword(s):  

2019 ◽  
Vol 10 ◽  
pp. 117959721985656 ◽  
Author(s):  
Christopher V Cosgriff ◽  
Leo Anthony Celi ◽  
David J Stone

As big data, machine learning, and artificial intelligence continue to penetrate into and transform many facets of our lives, we are witnessing the emergence of these powerful technologies within health care. The use and growth of these technologies has been contingent on the availability of reliable and usable data, a particularly robust resource in critical care medicine where continuous monitoring forms a key component of the infrastructure of care. The response to this opportunity has included the development of open databases for research and other purposes; the development of a collaborative form of clinical data science intended to fully leverage these data resources, and the creation of data-driven applications for purposes such as clinical decision support. Most recently, data levels have reached the thresholds required for the development of robust artificial intelligence features for clinical purposes. The systematic capture and analysis of clinical data in both individuals and populations allows us to begin to move toward precision medicine in the intensive care unit (ICU). In this perspective review, we examine the fundamental role of data as we present the current progress that has been made toward an artificial intelligence (AI)-supported, data-driven precision critical care medicine.


2017 ◽  
Vol 26 (01) ◽  
pp. 59-67 ◽  
Author(s):  
P. J. Scott ◽  
M. Rigby ◽  
E. Ammenwerth ◽  
J. McNair ◽  
A. Georgiou ◽  
...  

Summary Objectives: To set the scientific context and then suggest principles for an evidence-based approach to secondary uses of clinical data, covering both evaluation of the secondary uses of data and evaluation of health systems and services based upon secondary uses of data. Method: Working Group review of selected literature and policy approaches. Results: We present important considerations in the evaluation of secondary uses of clinical data from the angles of governance and trust, theory, semantics, and policy. We make the case for a multi-level and multi-factorial approach to the evaluation of secondary uses of clinical data and describe a methodological framework for best practice. We emphasise the importance of evaluating the governance of secondary uses of health data in maintaining trust, which is essential for such uses. We also offer examples of the re-use of routine health data to demonstrate how it can support evaluation of clinical performance and optimize health IT system design. Conclusions: Great expectations are resting upon “Big Data” and innovative analytics. However, to build and maintain public trust, improve data reliability, and assure the validity of analytic inferences, there must be independent and transparent evaluation. A mature and evidence-based approach needs not merely data science, but must be guided by the broader concerns of applied health informatics.


2019 ◽  
Vol 6 (1) ◽  
pp. 205395171982761 ◽  
Author(s):  
Christoph Raetzsch ◽  
Gabriel Pereira ◽  
Lasse S Vestergaard ◽  
Martin Brynskov

This article addresses the role of application programming interfaces (APIs) for integrating data sources in the context of smart cities and communities. On top of the built infrastructures in cities, application programming interfaces allow to weave new kinds of seams from static and dynamic data sources into the urban fabric. Contributing to debates about “urban informatics” and the governance of urban information infrastructures, this article provides a technically informed and critically grounded approach to evaluating APIs as crucial but often overlooked elements within these infrastructures. The conceptualization of what we term City APIs is informed by three perspectives: In the first part, we review established criticisms of proprietary social media APIs and their crucial function in current web architectures. In the second part, we discuss how the design process of APIs defines conventions of data exchanges that also reflect negotiations between API producers and API consumers about affordances and mental models of the underlying computer systems involved. In the third part, we present recent urban data innovation initiatives, especially CitySDK and OrganiCity, to underline the centrality of API design and governance for new kinds of civic and commercial services developed within and for cities. By bridging the fields of criticism, design, and implementation, we argue that City APIs as elements of infrastructures reveal how urban renewal processes become crucial sites of socio-political contestation between data science, technological development, urban management, and civic participation.


2016 ◽  
Vol 21 (3) ◽  
pp. 525-547 ◽  
Author(s):  
Scott Tonidandel ◽  
Eden B. King ◽  
Jose M. Cortina

Advances in data science, such as data mining, data visualization, and machine learning, are extremely well-suited to address numerous questions in the organizational sciences given the explosion of available data. Despite these opportunities, few scholars in our field have discussed the specific ways in which the lens of our science should be brought to bear on the topic of big data and big data's reciprocal impact on our science. The purpose of this paper is to provide an overview of the big data phenomenon and its potential for impacting organizational science in both positive and negative ways. We identifying the biggest opportunities afforded by big data along with the biggest obstacles, and we discuss specifically how we think our methods will be most impacted by the data analytics movement. We also provide a list of resources to help interested readers incorporate big data methods into their existing research. Our hope is that we stimulate interest in big data, motivate future research using big data sources, and encourage the application of associated data science techniques more broadly in the organizational sciences.


2018 ◽  
Vol 1 (1) ◽  
pp. 263-274 ◽  
Author(s):  
Marylyn D. Ritchie

Biomedical data science has experienced an explosion of new data over the past decade. Abundant genetic and genomic data are increasingly available in large, diverse data sets due to the maturation of modern molecular technologies. Along with these molecular data, dense, rich phenotypic data are also available on comprehensive clinical data sets from health care provider organizations, clinical trials, population health registries, and epidemiologic studies. The methods and approaches for interrogating these large genetic/genomic and clinical data sets continue to evolve rapidly, as our understanding of the questions and challenges continue to emerge. In this review, the state-of-the-art methodologies for genetic/genomic analysis along with complex phenomics will be discussed. This field is changing and adapting to the novel data types made available, as well as technological advances in computation and machine learning. Thus, I will also discuss the future challenges in this exciting and innovative space. The promises of precision medicine rely heavily on the ability to marry complex genetic/genomic data with clinical phenotypes in meaningful ways.


Sign in / Sign up

Export Citation Format

Share Document