Scrap Tires

Author(s):  
Rafat Siddique
Keyword(s):  
Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


2021 ◽  
pp. 1-30
Author(s):  
Yuhan Pan ◽  
Pingan Huang ◽  
Zhiliang Xue ◽  
Xinwen Wang ◽  
Yonggang Zhou ◽  
...  

2013 ◽  
Vol 19 (6) ◽  
pp. 425-429 ◽  
Author(s):  
Li Li ◽  
Yujing Liu ◽  
Jiaping Wang ◽  
Shuangxi Liu ◽  
Tan Zhu

2011 ◽  
Vol 399-401 ◽  
pp. 1251-1256 ◽  
Author(s):  
Wai Ching Tang ◽  
Hong Zhi Cui ◽  
Yiu Lo

Nowadays, one of the most essential environmental issues around the world is to deal with the scrap tire problem. Tires that are used, rejected or unwanted are classified as scrap tires and need to be managed responsibly. In this paper, the scrap tires were shredded into pieces and used to mix with normal weight concrete. Extensive laboratory tests were carried out and the focus of this paper was to characterize the mechanical and permeability properties of concrete containing scrap tires. The main parameters studied were chipped tire content and size. The results showed that the scrap-tire chips without adding special bonding agents apparently showed an even distribution in the mortar and concrete matrix. The elastic modulus, compressive and tensile strengths of scrap tire concrete in general were found lower than that of the control concrete and the differences became significant when the content and size of chipped tires in the mix were increased. Besides, the coefficients of water permeability of concrete were found to increase with increase of chipped tires in the mix.


2014 ◽  
Vol 8 (4) ◽  
pp. 391-398 ◽  
Author(s):  
Yan Han ◽  
Ping-Ping Zhao ◽  
Xiao-Ting Dong ◽  
Cui Zhang ◽  
Shuang-Xi Liu

Author(s):  
N. Stanley Harding

Tires provide a resource of significant interest to many utilities. Tires—and tire-derived fuel (TDF)—have a high calorific value along with other favorable fuel characteristics. At the same time they present material preparation and handling issues for fuel users. For environmental reasons, they are more difficult and costly to dispose of in landfills. In 1990, only 25 million tires or 11% of the annually generated scrap tires in the U.S. were utilized (recycled, retreaded, and burned for energy). In 1994, this number increased to 138 million tires or 55% of the annually generated scrap tires with the largest increase due to tires used for energy (101 million tires). With an estimated number between 1–3 billion tires in stockpiles throughout the United States, this potential energy source is enormous. This paper will review several commercial demonstrations of tire-derived fuel cofired with coal in industrial and utility furnaces. Included will be discussions on fuel characteristics, preparation and handling of the tire-derived fuel, methods of utilization of the cofired fuel including appropriate combustion systems (e.g., cyclone boilers, stokers, fluidized bed boilers) and environmental results of the cofiring demonstrations.


Sign in / Sign up

Export Citation Format

Share Document