Pulsatile Blood Flow Simulations in Aortic Arch: Effects of Blood Pressure and the Geometry of Arch on Wall Shear Stress

Author(s):  
P. Vasava ◽  
Payman Jalali ◽  
M. Dabagh
2020 ◽  
Vol 88 (2) ◽  
Author(s):  
Yuxi Jia ◽  
Kumaradevan Punithakumar ◽  
Michelle Noga ◽  
Arman Hemmati

Abstract The characteristics of blood flow in an abnormal pediatric aorta with an aortic coarctation and aortic arch narrowing are examined using direct numerical simulations and patient-specific boundary conditions. The blood flow simulations of a normal pediatric aorta are used for comparison to identify unique flow features resulting from the aorta geometrical anomalies. Despite flow similarities compared to the flow in normal aortic arch, the flow velocity decreases with an increase in pressure, wall shear stress, and vorticity around both anomalies. The presence of wall shear stresses in the trailing indentation region and aorta coarctation opposing the primary flow direction suggests that there exist recirculation zones in the aorta. The discrepancy in relative flowrates through the top and bottom of the aorta outlets, and the pressure drop across the coarctation, implies a high blood pressure in the upper body and a low blood pressure in the lower body. We propose using flow manipulators prior to the aortic arch and coarctation to lower the wall shear stress, while making the recirculation regions both smaller and weaker. The flow manipulators form a guide to divert and correct blood flow in critical regions of the aorta with anomalies.


2003 ◽  
Vol 125 (2) ◽  
pp. 207-217 ◽  
Author(s):  
E. A. Finol ◽  
K. Keyhani ◽  
C. H. Amon

In the abdominal segment of the human aorta under a patient’s average resting conditions, pulsatile blood flow exhibits complex laminar patterns with secondary flows induced by adjacent branches and irregular vessel geometries. The flow dynamics becomes more complex when there is a pathological condition that causes changes in the normal structural composition of the vessel wall, for example, in the presence of an aneurysm. This work examines the hemodynamics of pulsatile blood flow in hypothetical three-dimensional models of abdominal aortic aneurysms (AAAs). Numerical predictions of blood flow patterns and hemodynamic stresses in AAAs are performed in single-aneurysm, asymmetric, rigid wall models using the finite element method. We characterize pulsatile flow dynamics in AAAs for average resting conditions by means of identifying regions of disturbed flow and quantifying the disturbance by evaluating flow-induced stresses at the aneurysm wall, specifically wall pressure and wall shear stress. Physiologically realistic abdominal aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50⩽Rem⩽300, corresponding to a range of peak Reynolds numbers 262.5⩽Repeak⩽1575. The vortex dynamics induced by pulsatile flow in AAAs is depicted by a sequence of four different flow phases in one period of the cardiac pulse. Peak wall shear stress and peak wall pressure are reported as a function of the time-average Reynolds number and aneurysm asymmetry. The effect of asymmetry in hypothetically shaped AAAs is to increase the maximum wall shear stress at peak flow and to induce the appearance of secondary flows in late diastole.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Paritosh Vasava ◽  
Payman Jalali ◽  
Mahsa Dabagh ◽  
Pertti J. Kolari

A three-dimensional computer model of human aortic arch with three branches is reproduced to study the pulsatile blood flow with Finite Element Method. In specific, the focus is on variation of wall shear stress, which plays an important role in the localization and development of atherosclerotic plaques. Pulsatile pressure pulse is used as boundary condition to avoid flow entry development, and the aorta walls are considered rigid. The aorta model along with boundary conditions is altered to study the effect of hypotension and hypertension. The results illustrated low and fluctuating shear stress at outer and inner wall of aortic arch, proximal wall of branches, and entry region. Despite the simplification of aorta model, rigid walls and other assumptions results displayed that hypertension causes lowered local wall shear stresses. It is the sign of an increased risk of atherosclerosis. The assessment of hemodynamics shows that under the flow regimes of hypotension and hypertension, the risk of atherosclerosis localization in human aorta may increase.


2020 ◽  
Vol 59 (SK) ◽  
pp. SKKE16 ◽  
Author(s):  
Ryo Nagaoka ◽  
Kazuma Ishikawa ◽  
Michiya Mozumi ◽  
Magnus Cinthio ◽  
Hideyuki Hasegawa

Sign in / Sign up

Export Citation Format

Share Document