From Tree-Width to Clique-Width: Excluding a Unit Interval Graph

Author(s):  
Vadim V. Lozin
2000 ◽  
Vol 11 (03) ◽  
pp. 423-443 ◽  
Author(s):  
MARTIN CHARLES GOLUMBIC ◽  
UDI ROTICS

Graphs of clique–width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by k-expressions based on graph operations which use k vertex labels. In this paper we study the clique–width of perfect graph classes. On one hand, we show that every distance–hereditary graph, has clique–width at most 3, and a 3–expression defining it can be obtained in linear time. On the other hand, we show that the classes of unit interval and permutation graphs are not of bounded clique–width. More precisely, we show that for every [Formula: see text] there is a unit interval graph In and a permutation graph Hn having n2 vertices, each of whose clique–width is at least n. These results allow us to see the border within the hierarchy of perfect graphs between classes whose clique–width is bounded and classes whose clique–width is unbounded. Finally we show that every n×n square grid, [Formula: see text], n ≥ 3, has clique–width exactly n+1.


10.37236/6701 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Monique Laurent ◽  
Matteo Seminaroti ◽  
Shin-ichi Tanigawa

A symmetric matrix is Robinsonian if its rows and columns can be simultaneously reordered in such a way that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. The adjacency matrix of a graph is Robinsonian precisely when the graph is a unit interval graph, so that Robinsonian matrices form a matrix analogue of the class of unit interval graphs. Here we provide a structural characterization for Robinsonian matrices in terms of forbidden substructures, extending the notion of  asteroidal triples to weighted graphs. This implies the known characterization of unit interval graphs and leads to an efficient algorithm for certifying that a matrix is not Robinsonian.


10.37236/8211 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Angèle M. Foley ◽  
Chính T. Hoàng ◽  
Owen D. Merkel

In the mid-1990s, Stanley and Stembridge conjectured that the chromatic symmetric functions of claw-free co-comparability (also called incomparability) graphs were $e$-positive. The quest for the proof of this conjecture has led to an examination of other, related graph classes. In 2013 Guay-Paquet proved that if unit interval graphs are $e$-positive, that implies claw-free incomparability graphs are as well. Inspired by this approach, we consider a related case and prove  that unit interval graphs whose complement is also a unit interval graph are $e$-positive.   We introduce the concept of strongly $e$-positive to denote a graph whose induced subgraphs are all $e$-positive, and conjecture that a graph is strongly $e$-positive if and only if it is (claw, net)-free.  


Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 140 ◽  
Author(s):  
Asahi Takaoka

The Hamiltonian cycle reconfiguration problem asks, given two Hamiltonian cycles C 0 and C t of a graph G, whether there is a sequence of Hamiltonian cycles C 0 , C 1 , … , C t such that C i can be obtained from C i − 1 by a switch for each i with 1 ≤ i ≤ t , where a switch is the replacement of a pair of edges u v and w z on a Hamiltonian cycle with the edges u w and v z of G, given that u w and v z did not appear on the cycle. We show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete, settling an open question posed by Ito et al. (2011) and van den Heuvel (2013). More precisely, we show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete for chordal bipartite graphs, strongly chordal split graphs, and bipartite graphs with maximum degree 6. Bipartite permutation graphs form a proper subclass of chordal bipartite graphs, and unit interval graphs form a proper subclass of strongly chordal graphs. On the positive side, we show that, for any two Hamiltonian cycles of a bipartite permutation graph and a unit interval graph, there is a sequence of switches transforming one cycle to the other, and such a sequence can be obtained in linear time.


2018 ◽  
Vol 52 (4-5) ◽  
pp. 1123-1145
Author(s):  
Alain Quilliot ◽  
Djamal Rebaine ◽  
Hélène Toussaint

We deal here with theLinear Arrangement Problem(LAP) onintervalgraphs, any interval graph being given here together with its representation as theintersectiongraph of some collection of intervals, and so with relatedprecedenceandinclusionrelations. We first propose a lower boundLB, which happens to be tight in the case ofunit intervalgraphs. Next, we introduce the restriction PCLAP of LAP which is obtained by requiring any feasible solution of LAP to be consistent with theprecedencerelation, and prove that PCLAP can be solved in polynomial time. Finally, we show both theoretically and experimentally that PCLAP solutions are a good approximation for LAP onintervalgraphs.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Peng Li ◽  
Yaokun Wu

Graph Theory International audience In their 2009 paper, Corneil et al. design a linear time interval graph recognition algorithm based on six sweeps of Lexicographic Breadth-First Search (LBFS) and prove its correctness. They believe that their corresponding 5-sweep LBFS interval graph recognition algorithm is also correct. Thanks to the LBFS structure theory established mainly by Corneil et al., we are able to present a 4-sweep LBFS algorithm which determines whether or not the input graph is a unit interval graph or an interval graph. Like the algorithm of Corneil et al., our algorithm does not involve any complicated data structure and can be executed in linear time.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Flavia Bonomo ◽  
Guillermo Durán ◽  
Luciano N. Grippo ◽  
Martın D. Safe

Graph Theory International audience A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non-(probe G) graphs with disconnected complement for every graph class G with a companion.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


2021 ◽  
pp. 1-23
Author(s):  
Peide Liu ◽  
Tahir Mahmood ◽  
Zeeshan Ali

Complex q-rung orthopair fuzzy set (CQROFS) is a proficient technique to describe awkward and complicated information by the truth and falsity grades with a condition that the sum of the q-powers of the real part and imaginary part is in unit interval. Further, Schweizer–Sklar (SS) operations are more flexible to aggregate the information, and the Muirhead mean (MM) operator can examine the interrelationships among the attributes, and it is more proficient and more generalized than many aggregation operators to cope with awkward and inconsistence information in realistic decision issues. The objectives of this manuscript are to explore the SS operators based on CQROFS and to study their score function, accuracy function, and their relationships. Further, based on these operators, some MM operators based on PFS, called complex q-rung orthopair fuzzy MM (CQROFMM) operator, complex q-rung orthopair fuzzy weighted MM (CQROFWMM) operator, and their special cases are presented. Additionally, the multi-criteria decision making (MCDM) approach is developed by using the explored operators based on CQROFS. Finally, the advantages and comparative analysis are also discussed.


Sign in / Sign up

Export Citation Format

Share Document