Non-equilibrium spin-dynamics of Gd(0001) studied by time-resolved SHG and magnetic linear dichroism in 4f core-level photoemission

Author(s):  
A. Melnikov ◽  
H. Prima-Garcia ◽  
M. Lisowski ◽  
T. Gießel ◽  
R. Weber ◽  
...  
Author(s):  
Christoph Klewe ◽  
Satoru Emori ◽  
Qian Li ◽  
Mengmeng Yang ◽  
Benjamin A. Gray ◽  
...  

Abstract We present the first theoretical and experimental evidence of time-resolved dynamic X-ray magnetic linear dichroism (XMLD) measurements of GHz magnetic precessions driven by ferromagnetic resonance in both metallic and insulating thin films. Our findings show a dynamic XMLD in both ferromagnetic Ni80Fe20 and ferrimagnetic Ni0.65Zn0.35Al0.8Fe1.2O4 for different measurement geometries and linear polarizations. A detailed analysis of the observed signals reveals the importance of separating different harmonic components in the dynamic signal in order to identify the XMLD response without the influence of competing contributions. In particular, RF magnetic resonance elicits a large dynamic XMLD response at the fundamental frequency under experimental geometries with oblique x-ray polarization. The geometric range and experimental sensitivity can be improved by isolating the 2ω Fourier component of the dynamic response.These results illustrate the potential of dynamic XMLD and represent a milestone accomplishment towards the study of GHz spin dynamics in systems beyond ferromagnetic order.


1993 ◽  
Vol 86 (10) ◽  
pp. 647-650 ◽  
Author(s):  
Ch. Roth ◽  
H.B. Rose ◽  
F.U. Hillebrecht ◽  
E. Kisker

2011 ◽  
Vol 107 (19) ◽  
Author(s):  
K. W. Edmonds ◽  
G. van der Laan ◽  
N. R. S. Farley ◽  
R. P. Campion ◽  
B. L. Gallagher ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tamara Sloboda ◽  
Sebastian Svanström ◽  
Fredrik O. L. Johansson ◽  
Aneta Andruszkiewicz ◽  
Xiaoliang Zhang ◽  
...  

AbstractTime-resolved photoelectron spectroscopy can give insights into carrier dynamics and offers the possibility of element and site-specific information through the measurements of core levels. In this paper, we demonstrate that this method can access electrons dynamics in PbS quantum dots over a wide time window spanning from pico- to microseconds in a single experiment carried out at the synchrotron facility BESSY II. The method is sensitive to small changes in core level positions. Fast measurements at low pump fluences are enabled by the use of a pump laser at a lower repetition frequency than the repetition frequency of the X-ray pulses used to probe the core level electrons: Through the use of a time-resolved spectrometer, time-dependent analysis of data from all synchrotron pulses is possible. Furthermore, by picosecond control of the pump laser arrival at the sample relative to the X-ray pulses, a time-resolution limited only by the length of the X-ray pulses is achieved. Using this method, we studied the charge dynamics in thin film samples of PbS quantum dots on n-type MgZnO substrates through time-resolved measurements of the Pb 5d core level. We found a time-resolved core level shift, which we could assign to electron injection and charge accumulation at the MgZnO/PbS quantum dots interface. This assignment was confirmed through the measurement of PbS films with different thicknesses. Our results therefore give insight into the magnitude of the photovoltage generated specifically at the MgZnO/PbS interface and into the timescale of charge transport and electron injection, as well as into the timescale of charge recombination at this interface. It is a unique feature of our method that the timescale of both these processes can be accessed in a single experiment and investigated for a specific interface.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Ravnik ◽  
Michele Diego ◽  
Yaroslav Gerasimenko ◽  
Yevhenii Vaskivskyi ◽  
Igor Vaskivskyi ◽  
...  

AbstractMetastable self-organized electronic states in quantum materials are of fundamental importance, displaying emergent dynamical properties that may be used in new generations of sensors and memory devices. Such states are typically formed through phase transitions under non-equilibrium conditions and the final state is reached through processes that span a large range of timescales. Conventionally, phase diagrams of materials are thought of as static, without temporal evolution. However, many functional properties of materials arise as a result of complex temporal changes in the material occurring on different timescales. Hitherto, such properties were not considered within the context of a temporally-evolving phase diagram, even though, under non-equilibrium conditions, different phases typically evolve on different timescales. Here, by using time-resolved optical techniques and femtosecond-pulse-excited scanning tunneling microscopy (STM), we track the evolution of the metastable states in a material that has been of wide recent interest, the quasi-two-dimensional dichalcogenide 1T-TaS2. We map out its temporal phase diagram using the photon density and temperature as control parameters on timescales ranging from 10−12 to 103 s. The introduction of a time-domain axis in the phase diagram enables us to follow the evolution of metastable emergent states created by different phase transition mechanisms on different timescales, thus enabling comparison with theoretical predictions of the phase diagram, and opening the way to understanding of the complex ordering processes in metastable materials.


1999 ◽  
Vol 142 (1-4) ◽  
pp. 549-552 ◽  
Author(s):  
O Zeybek ◽  
N.P Tucker ◽  
S.D Barrett ◽  
H.A Dürr ◽  
G van der Laan

Sign in / Sign up

Export Citation Format

Share Document