The Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS)

Author(s):  
E.R. Kursinski ◽  
D. Ward ◽  
A. Otarola ◽  
R. Frehlich ◽  
C. Groppi ◽  
...  
2012 ◽  
Vol 5 (2) ◽  
pp. 439-456 ◽  
Author(s):  
E. R. Kursinski ◽  
D. Ward ◽  
M. Stovern ◽  
A. C. Otarola ◽  
A. Young ◽  
...  

Abstract. We present initial results from testing a new remote sensing system called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). ATOMMS is designed as a satellite-to-satellite occultation system for monitoring climate. We are developing the prototype instrument for an aircraft to aircraft occultation demonstration. Here we focus on field testing of the ATOMMS instrument, in particular the remote sensing of water by measuring the attenuation caused by the 22 GHz and 183 GHz water absorption lines. Our measurements of the 183 GHz line spectrum along an 820 m path revealed that the AM 6.2 spectroscopic model provdes a much better match to the observed spectrum than the MPM93 model. These comparisons also indicate that errors in the ATOMMS amplitude measurements are about 0.3%. Pressure sensitivity bodes well for ATOMMS as a climate instrument. Comparisons with a hygrometer revealed consistency at the 0.05 mb level, which is about 1% of the absolute humidity. Initial measurements of absorption by the 22 GHz line made along a 5.4 km path between two mountaintops captured a large increase in water vapor similar to that measured by several nearby hygrometers. A storm passage between the two instruments yielded our first measurements of extinction by rain and cloud droplets. Comparisons of ATOMMS 1.5 mm opacity measurements with measured visible opacity and backscatter from a weather radar revealed features simultaneously evident in all three datasets confirming the ATOMMS measurements. The combined ATOMMS, radar and visible information revealed the evolution of rain and cloud amounts along the signal path during the passage of the storm. The derived average cloud water content reached typical continental cloud amounts. These results demonstrated a significant portion of the information content of ATOMMS and its ability to penetrate through clouds and rain which is critical to its all-weather, climate monitoring capability.


2011 ◽  
Vol 4 (4) ◽  
pp. 4667-4715
Author(s):  
E. R. Kursinski ◽  
D. Ward ◽  
M. Stovern ◽  
A. C. Otarola ◽  
A. Young ◽  
...  

Abstract. We present initial results from testing a new remote sensing system called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). ATOMMS is designed as a satellite to satellite occultation system for monitoring climate. We are developing the prototype instrument for an aircraft to aircraft occultation demonstration. Here we focus on field testing of the ATOMMS instrument, in particular the remote sensing of water by measuring the attenuation caused by the 22 and 183 GHz water absorption lines. The 183 GHz line spectrum was measured along an 820 m path and compared with two spectroscopic models. This revealed that the AM 6.2 model is a much better match to the observed spectrum than the MPM93 model. These comparisons also indicate the ATOMMS amplitude errors were at the 0.3 % level. Comparisons with a hygrometer showed tracking consistent at the 0.05 mb level which is about 1 % of the absolute humidity. Initial 22 GHz measurements along a 5.4 path between two mountaintops showed the 22 GHz channels tracking a large change in water vapor. Ground truth is much harder to establish.


Author(s):  
Ramiz Tagirov ◽  
◽  
Maya Zeynalova ◽  

The article examines the problem of fresh water, since in terms of water supply from its own resources per capita and per 1 km2, the republic is 8 times behind Georgia, 2 times behind Armenia. Significant water consumption in Azerbaijan is caused by its arid territory with a predominance of active temperature and a lack of precipitation, which leads to intensive irrigation of crops. At the same time, artificial irrigation is used on 70% of the cultivated land.


1985 ◽  
Vol 50 (11) ◽  
pp. 2480-2492 ◽  
Author(s):  
Soňa Přádná ◽  
Dušan Papoušek ◽  
Jyrki Kauppinen ◽  
Sergei P. Belov ◽  
Andrei F. Krupnov ◽  
...  

Fourier transform spectra of the ν2 band of PH3 have been remeasured with 0.0045 cm-1 resolution. Ground state combination differences from these data have been fitted simultaneously with the microwave and submillimeterwave data to determine the ground state spectroscopical parameters of PH3 including the parameters of the Δk = ± 3n interactions. The correlation between the latter parameters has been discussed from the point of view of the existence of two equivalent effective rotational operators which are related by a unitary transformation. The ΔJ = 0, +1, ΔK = 0 (A1 ↔ A2, E ↔ E) rotational transitions in the ν2 and ν4 states have been measured for the first time by using a microwave spectrometer and a radiofrequency spectrometer with acoustic detection.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 199
Author(s):  
Yu-Cheng Lin ◽  
Liang-Yü Chen

The generation of lossy mode resonances (LMR) with a metallic oxide film deposited on an optical fiber has attracted the attention of many applications. However, an LMR-based optical fiber sensor is frangible, and therefore it does not allow control of the temperature and is not suited to mass production. This paper aims to develop a temperature-controlled lossy mode resonance (TC-LMR) sensor on an optical planar waveguide with an active temperature control function in which an ITO film is not only used as the LMR resonance but also to provide the heating function to achieve the benefits of compact size and active temperature control. A simple flat model about the heat transfer mechanism is proposed to determine the heating time constant for the applied voltages. The TC-LMR sensor is evaluated experimentally for refractive index measurement using a glycerol solution. The heating temperature functions relative to the controlled voltages for water and glycerol are obtained to verify the performance of the TC-LMR sensor. The TC-LMR sensor is a valuable sensing device that can be used in clinical testing and point of care for programming heating with precise temperature control.


1974 ◽  
Vol 5 (3) ◽  
pp. 179-186 ◽  
Author(s):  
L. W. Hrubesh ◽  
M. S. Felice ◽  
V. J. Barton

Author(s):  
Arsh Singh Hazrah ◽  
Mohamad al-Jabiri ◽  
Raiden Speelman ◽  
Wolfgang Jaeger

Broadband rotational spectra of cis- and trans- (-) carveol were recorded using a chirped pulse Fourier transform microwave spectrometer in the 2-6 GHz region. To aid in spectroscopic assignments a...


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Sheng Yuan ◽  
Matthew Church ◽  
Valeriy V. Yashchuk ◽  
Kenneth A. Goldberg ◽  
Richard S. Celestre ◽  
...  

We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the advanced light source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3 K does not noticeably affect the mirror figure. Without temperature stabilization, the rms slope error is changed by approximately 1.5 μrad (primarily defocus) under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document