LCGT: A Low-Cost Continuous Ground Truth Generation Method for Traffic Classification

Author(s):  
Xu Tian ◽  
Xiaohong Huang ◽  
Qiong Sun
2021 ◽  
Vol 7 (2) ◽  
pp. 21
Author(s):  
Roland Perko ◽  
Manfred Klopschitz ◽  
Alexander Almer ◽  
Peter M. Roth

Many scientific studies deal with person counting and density estimation from single images. Recently, convolutional neural networks (CNNs) have been applied for these tasks. Even though often better results are reported, it is often not clear where the improvements are resulting from, and if the proposed approaches would generalize. Thus, the main goal of this paper was to identify the critical aspects of these tasks and to show how these limit state-of-the-art approaches. Based on these findings, we show how to mitigate these limitations. To this end, we implemented a CNN-based baseline approach, which we extended to deal with identified problems. These include the discovery of bias in the reference data sets, ambiguity in ground truth generation, and mismatching of evaluation metrics w.r.t. the training loss function. The experimental results show that our modifications allow for significantly outperforming the baseline in terms of the accuracy of person counts and density estimation. In this way, we get a deeper understanding of CNN-based person density estimation beyond the network architecture. Furthermore, our insights would allow to advance the field of person density estimation in general by highlighting current limitations in the evaluation protocols.


2019 ◽  
Vol 53 (1) ◽  
pp. 38-39
Author(s):  
Anjie Fang

Recently, political events, such as elections, have raised a lot of discussions on social media networks, in particular, Twitter. This brings new opportunities for social scientists to address social science tasks, such as understanding what communities said or identifying whether a community has an influence on another. However, identifying these communities and extracting what they said from social media data are challenging and non-trivial tasks. We aim to make progress towards understanding 'who' (i.e. communities) said 'what' (i.e. discussed topics) and 'when' (i.e. time) during political events on Twitter. While identifying the 'who' can benefit from Twitter user community classification approaches, 'what' they said and 'when' can be effectively addressed on Twitter by extracting their discussed topics using topic modelling approaches that also account for the importance of time on Twitter. To evaluate the quality of these topics, it is necessary to investigate how coherent these topics are to humans. Accordingly, we propose a series of approaches in this thesis. First, we investigate how to effectively evaluate the coherence of the topics generated using a topic modelling approach. The topic coherence metric evaluates the topical coherence by examining the semantic similarity among words in a topic. We argue that the semantic similarity of words in tweets can be effectively captured by using word embeddings trained using a Twitter background dataset. Through a user study, we demonstrate that our proposed word embedding-based topic coherence metric can assess the coherence of topics like humans [1, 2]. In addition, inspired by the precision at k metric, we propose to evaluate the coherence of a topic model (containing many topics) by averaging the top-ranked topics within the topic model [3]. Our proposed metrics can not only evaluate the coherence of topics and topic models, but also can help users to choose the most coherent topics. Second, we aim to extract topics with a high coherence from Twitter data. Such topics can be easily interpreted by humans and they can assist to examine 'what' has been discussed and 'when'. Indeed, we argue that topics can be discussed in different time periods (see [4]) and therefore can be effectively identified and distinguished by considering their time periods. Hence, we propose an effective time-sensitive topic modelling approach by integrating the time dimension of tweets (i.e. 'when') [5]. We show that the time dimension helps to generate topics with a high coherence. Hence, we argue that 'what' has been discussed and 'when' can be effectively addressed by our proposed time-sensitive topic modelling approach. Next, to identify 'who' participated in the topic discussions, we propose approaches to identify the community affiliations of Twitter users, including automatic ground-truth generation approaches and a user community classification approach. We show that the mentioned hashtags and entities in the users' tweets can indicate which community a Twitter user belongs to. Hence, we argue that they can be used to generate the ground-truth data for classifying users into communities. On the other hand, we argue that different communities favour different topic discussions and their community affiliations can be identified by leveraging the discussed topics. Accordingly, we propose a Topic-Based Naive Bayes (TBNB) classification approach to classify Twitter users based on their words and discussed topics [6]. We demonstrate that our TBNB classifier together with the ground-truth generation approaches can effectively identify the community affiliations of Twitter users. Finally, to show the generalisation of our approaches, we apply our approaches to analyse 3.6 million tweets related to US Election 2016 on Twitter [7]. We show that our TBNB approach can effectively identify the 'who', i.e. classify Twitter users into communities. To investigate 'what' these communities have discussed, we apply our time-sensitive topic modelling approach to extract coherent topics. We finally analyse the community-related topics evaluated and selected using our proposed topic coherence metrics. Overall, we contribute to provide effective approaches to assist social scientists towards analysing political events on Twitter. These approaches include topic coherence metrics, a time-sensitive topic modelling approach and approaches for classifying the community affiliations of Twitter users. Together they make progress to study and understand the connections and dynamics among communities on Twitter. Supervisors : Iadh Ounis, Craig Macdonald, Philip Habel The thesis is available at http://theses.gla.ac.uk/41135/


2013 ◽  
Vol 31 (12) ◽  
pp. 921-934 ◽  
Author(s):  
Ruan Lakemond ◽  
Clinton Fookes ◽  
Sridha Sridharan

Author(s):  
Valentín Carela-Español ◽  
Tomasz Bujlow ◽  
Pere Barlet-Ros

2019 ◽  
Vol 13 (1) ◽  
pp. 47-61
Author(s):  
Guenther Retscher ◽  
Jonathan Kleine ◽  
Lisa Whitemore

Abstract More and more sensors and receivers are found nowadays in smartphones which can enable and improve positioning for Location-based Services and other navigation applications. Apart from inertial sensors, such as accelerometers, gyroscope and magnetometer, receivers for Wireless Fidelity (Wi-Fi) and GNSS signals can be employed for positioning of a mobile user. In this study, three trilateration methods for Wi-Fi positioning are investigated whereby the influence of the derivation of the relationship between the received signal strength (RSS) and the range to an Access Points (AP) are analyzed. The first approach is a straightforward resection for point determination and the second is based on the calculation of the center of gravity in a triangle of APs while weighting the received RSS. In the third method a differential approach is employed where as in Differential GNSS (DGNSS) corrections are derived and applied to the raw RSS measurements. In this Differential Wi-Fi (DWi-Fi) method, reference stations realized by low-cost Raspberry Pi units are used to model temporal RSS variations. In the experiments in this study two different indoor environments are used, one in a laboratory and the second in the entrance of an office building. The results of the second and third approach show position deviations from the ground truth of around 2 m in dependence of the geometrical point location. Furthermore, the transition between GNSS positioning outdoors and Wi-Fi localization indoors in the entrance area of the building is studied.


2017 ◽  
Vol 36 (12) ◽  
pp. 1363-1386 ◽  
Author(s):  
Patrick McGarey ◽  
Kirk MacTavish ◽  
François Pomerleau ◽  
Timothy D Barfoot

Tethered mobile robots are useful for exploration in steep, rugged, and dangerous terrain. A tether can provide a robot with robust communications, power, and mechanical support, but also constrains motion. In cluttered environments, the tether will wrap around a number of intermediate ‘anchor points’, complicating navigation. We show that by measuring the length of tether deployed and the bearing to the most recent anchor point, we can formulate a tethered simultaneous localization and mapping (TSLAM) problem that allows us to estimate the pose of the robot and the positions of the anchor points, using only low-cost, nonvisual sensors. This information is used by the robot to safely return along an outgoing trajectory while avoiding tether entanglement. We are motivated by TSLAM as a building block to aid conventional, camera, and laser-based approaches to simultaneous localization and mapping (SLAM), which tend to fail in dark and or dusty environments. Unlike conventional range-bearing SLAM, the TSLAM problem must account for the fact that the tether-length measurements are a function of the robot’s pose and all the intermediate anchor-point positions. While this fact has implications on the sparsity that can be exploited in our method, we show that a solution to the TSLAM problem can still be found and formulate two approaches: (i) an online particle filter based on FastSLAM and (ii) an efficient, offline batch solution. We demonstrate that either method outperforms odometry alone, both in simulation and in experiments using our TReX (Tethered Robotic eXplorer) mobile robot operating in flat-indoor and steep-outdoor environments. For the indoor experiment, we compare each method using the same dataset with ground truth, showing that batch TSLAM outperforms particle-filter TSLAM in localization and mapping accuracy, owing to superior anchor-point detection, data association, and outlier rejection.


Author(s):  
Shibaprasad Sen ◽  
Ankan Bhattacharyya ◽  
Ram Sarkar ◽  
Kaushik Roy

The work reported in this article deals with the ground truth generation scheme for online handwritten Bangla documents at text-line, word, and stroke levels. The aim of the proposed scheme is twofold: firstly, to build a document level database so that future researchers can use the database to do research in this field. Secondly, the ground truth information will help other researchers to evaluate the performance of their algorithms developed for text-line extraction, word extraction, word segmentation, stroke recognition, and word recognition. The reported ground truth generation scheme starts with text-line extraction from the online handwritten Bangla documents, then words extraction from the text-lines, and finally segmentation of those words into basic strokes. After word segmentation, the basic strokes are assigned appropriate class labels by using modified distance-based feature extraction procedure and the MLP ( Multi-layer Perceptron ) classifier. The Unicode for the words are then generated from the sequence of stroke labels. XML files are used to store the stroke, word, and text-line levels ground truth information for the corresponding documents. The proposed system is semi-automatic and each step such as text-line extraction, word extraction, word segmentation, and stroke recognition has been implemented by using different algorithms. Thus, the proposed ground truth generation procedure minimizes huge manual intervention by reducing the number of mouse clicks required to extract text-lines, words from the document, and segment the words into basic strokes. The integrated stroke recognition module also helps to minimize the manual labor needed to assign appropriate stroke labels. The freely available and can be accessed at https://byanjon.herokuapp.com/ .


Sign in / Sign up

Export Citation Format

Share Document