End-Point Stem-Loop Real-Time RT-PCR for miRNA Quantification

Author(s):  
Zhiguo Wang ◽  
Baofeng Yang
Keyword(s):  
Rt Pcr ◽  
2014 ◽  
Vol 201 ◽  
pp. 79-85 ◽  
Author(s):  
Michele Drigo ◽  
Giovanni Franzo ◽  
Ilaria Belfanti ◽  
Marco Martini ◽  
Alessandra Mondin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Domenico Rizzo ◽  
Daniele Da Lio ◽  
Alessandra Panattoni ◽  
Chiara Salemi ◽  
Giovanni Cappellini ◽  
...  

Tomato brown rugose fruit virus (ToBRFV) represents an emerging viral threat to the productivity of tomato and pepper protected cultivation worldwide. This virus has got the status of quarantine organism in the European Union (EU) countries. In particular, tomato and pepper seeds will need to be free of ToBRFV before entering the EU and before coming on the market. Thus, lab tests are needed. Here, we develop and validate a one-step reverse transcription LAMP platform for the detection of ToBRFV in tomato and pepper leaves, by real-time assay [reverse transcription loop-mediated isothermal amplification (RT-LAMP)] and visual screening (visual RT-LAMP). Moreover, these methods can also be applied successfully for ToBRFV detection in tomato and pepper seeds. The diagnostic specificity and sensitivity of both RT-LAMP and visual RT-LAMP are both 100%, with a detection limit of nearly 2.25 fg/μl, showing the same sensitivity as RT-qPCR Sybr Green, but 100 times more sensitive than end-point RT-PCR diagnostic methods. In artificially contaminated seeds, the proposed LAMP assays detected ToBRFV in 100% of contaminated seed lots, for up to 0.025–0.033% contamination rates in tomato and pepper, respectively. Our results demonstrate that the proposed LAMP assays are simple, inexpensive, and sensitive enough for the detection of ToBRFV, especially in seed health testing. Hence, these methods have great potential application in the routine detection of ToBRFV, both in seeds and plants, reducing the risk of epidemics.


2005 ◽  
Vol 33 (20) ◽  
pp. e179-e179 ◽  
Author(s):  
C. Chen
Keyword(s):  
Rt Pcr ◽  

Gene ◽  
2009 ◽  
Vol 437 (1-2) ◽  
pp. 14-21 ◽  
Author(s):  
Junli Feng ◽  
Kai Wang ◽  
Xin Liu ◽  
Shaoning Chen ◽  
Jishuang Chen
Keyword(s):  
Rt Pcr ◽  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7928 ◽  
Author(s):  
Stefano Panno ◽  
Susana Ruiz-Ruiz ◽  
Andrea Giovanni Caruso ◽  
Ana Alfaro-Fernandez ◽  
Maria Isabel Font San Ambrosio ◽  
...  

Background Tomato brown rugose fruit virus (ToBRFV) is a highly infectious tobamovirus that causes severe disease in tomato (Solanum lycopersicum L.) crops. In Italy, the first ToBRFV outbreak occurred in 2018 in several provinces of the Sicily region. ToBRFV outbreak represents a serious threat for tomato crops in Italy and the Mediterranean Basin. Methods Molecular and biological characterisation of the Sicilian ToBRFV ToB-SIC01/19 isolate was performed, and a sensitive and specific Real-time RT-PCR TaqMan minor groove binder probe method was developed to detect ToBRFV in infected plants and seeds. Moreover, four different sample preparation procedures (immunocapture, total RNA extraction, direct crude extract and leaf-disk crude extract) were evaluated. Results The Sicilian isolate ToB-SIC01/19 (6,391 nt) showed a strong sequence identity with the isolates TBRFV-P12-3H and TBRFV-P12-3G from Germany, Tom1-Jo from Jordan and TBRFV-IL from Israel. The ToB-SIC01/19 isolate was successfully transmitted by mechanical inoculations in S. lycopersicum L. and Capsicum annuum L., but no transmission occurred in S. melongena L. The developed real-time RT-PCR, based on the use of a primer set designed on conserved sequences in the open reading frames3, enabled a reliable quantitative detection. This method allowed clear discrimination of ToBRFV from other viruses belonging to the genus Tobamovirus, minimising false-negative results. Using immunocapture and total RNA extraction procedures, the real-time RT-PCR and end-point RT-PCR gave the same comparable results. Using direct crude extracts and leaf-disk crude extracts, the end-point RT-PCR was unable to provide a reliable result. This developed highly specific and sensitive real-time RT-PCR assay will be a particularly valuable tool for early ToBRFV diagnosis, optimising procedures in terms of costs and time.


2005 ◽  
Vol 173 (4S) ◽  
pp. 145-145 ◽  
Author(s):  
Martin Schostak ◽  
Hans Krause ◽  
Jens Köllermann ◽  
Mark Schrader ◽  
Bernd Straub ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

Sign in / Sign up

Export Citation Format

Share Document