Biofilms and Antimicrobial Resistance in Companion Animals

Author(s):  
Thomas W. Maddox
2021 ◽  
Author(s):  
María Valeria Rumi ◽  
Ezequiel Nuske ◽  
Javier Mas ◽  
Andrea Argüello ◽  
Gabriel Gutkind ◽  
...  

2016 ◽  
Vol 71 (6) ◽  
pp. 1479-1487 ◽  
Author(s):  
Natacha Couto ◽  
Cláudia Monchique ◽  
Adriana Belas ◽  
Cátia Marques ◽  
Luís T. Gama ◽  
...  

2017 ◽  
Vol 70 (4) ◽  
pp. 394-398 ◽  
Author(s):  
Yuzo Tsuyuki ◽  
Goro Kurita ◽  
Yoshiteru Murata ◽  
Mieko Goto ◽  
Takashi Takahashi

2020 ◽  
Vol 65 (No. 5) ◽  
pp. 191-198
Author(s):  
H Sukur ◽  
OM Esendal

Coagulase-negative staphylococci (CoNS) are a group of commensal microorganisms residing on the skin and mucous membranes of both humans and animals. Until recently, they have been regarded as non-pathogenic to livestock and companion animals, but since then, their clinical importance in veterinary medicine has increased with the discovery of their potential pathogenic roles in animals causing skin and soft tissue infections together with spontaneous abortions and mastitis. Scientific data concerning the presence of CoNS in North Cyprus are very limited. Therefore, the purpose of the study reported herein was to investigate the presence and antimicrobial resistance patterns of CoNS species isolated from various animals presented at the Veterinary Teaching Hospital in North Cyprus between July 2018 and 2019. Staphylococci were isolated from 37.0% (87/235) of the samples submitted, within which 60.9% (53/87) and 39.1% (34/87) were identified as coagulase-positive staphylococci (CoPS) and coagulase-negative staphylococci (CoNS), respectively. Among the CoNS, S. chromogenes was the most predominantly isolated species (14/34, 41.2%), followed by S. capitis (5/34, 14.7%) and S. simulans (4/34, 11.8%). Of these 34 CoNS, 24 (70.6%) and 10 (29.4%) were identified as MRCoNS and MSCoNS, respectively. The CoNS isolates showed relatively high levels of resistance towards amoxicillin/clavulanic acid (19/34, 55.9%), tetracycline (14/34, 41.2%) and penicillin (13/34, 38.2%). In conclusion, the presence of CoNS, especially MRCoNS, and the detection of multiple drug resistant (MDR) species with a high prevalence were regarded as being important since they might limit and have negative effects on the therapeutic treatment options of staphylococcal infections in animals, and might have both public and veterinary concerns.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Tessa E. LeCuyer ◽  
Barbara A. Byrne ◽  
Joshua B. Daniels ◽  
Dubraska V. Diaz-Campos ◽  
G. Kenitra Hammac ◽  
...  

ABSTRACTEscherichia coliis the most common cause of human and canine urinary tract infection (UTI). Clonal groups, often with high levels of antimicrobial resistance, are a major component of theE. colipopulation that causes human UTI. While little is known about the population structure ofE. colithat causes UTI in dogs, there is evidence that dogs and humans can share fecal strains ofE. coliand that human-associated strains can cause disease in dogs. In order to better characterize theE. colistrains that cause canine UTI, we analyzed 295E. coliisolates obtained from canine urine samples from five veterinary diagnostic laboratories and analyzed their multilocus sequence types, phenotypic and genotypic antimicrobial resistance profiles, and virulence-associated gene repertoires. Sequence type 372 (ST372), an infrequent human pathogen, was the predominant sequence type in dogs at all locations. Extended-spectrum β-lactamase-producing isolates withblaCTX-Mgenes were uncommon in canine isolates but when present were often associated with sequence types that have been described in human infections. This provides support for occasional cross-host-species sharing of strains that cause extraintestinal disease and highlights the importance of understanding the role of companion animals in the overall transmission patterns of extraintestinal pathogenicE. coli.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174178 ◽  
Author(s):  
Kazuki Harada ◽  
Takae Shimizu ◽  
Yujiro Mukai ◽  
Ken Kuwajima ◽  
Tomomi Sato ◽  
...  

Author(s):  
Catherine A. Blunt ◽  
Moritz Van Vuuren ◽  
Jacqueline Picard

Successful treatment of canine pyoderma has become compromised owing to the development of antimicrobial resistance with accompanying recurrence of infection. Canine skin samples submitted to a veterinary diagnostic laboratory for microbiological culture and sensitivity between January 2007 and June 2010, from which Staphylococcus intermedius was isolated, were selected for this investigation. Antimicrobial resistance of S. intermedius was most prevalent with reference to ampicillin followed by resistance to tetracycline and then potentiated sulphonamides. In general, antimicrobial resistance was low and very few methicillin-resistant isolates were detected. Temporal trends were not noted, except for ampicillin, with isolates becoming more susceptible, and potentiated sulphonamides (co-trimoxazole), with isolates becoming more resistant. In general, both the Kirby–Bauer disc diffusion and broth dilution minimum inhibitory concentration tests yielded similar results for the antimicrobial agents tested. The main difference was evident in the over-estimation of resistance by the Kirby–Bauer test for ampicillin, co-trimoxazole, penicillin and doxycycline. Knowledge of trends in bacterial resistance is important for veterinarians when presented with canine pyoderma. Analysis of antimicrobial susceptibility profiles of S. intermedius isolated from canine pyodermas will guide veterinarians’ use of the most appropriate agent and encourage prudent use of antimicrobials in companion animals.


Sign in / Sign up

Export Citation Format

Share Document