scholarly journals Identification of Group G Streptococcal Isolates from Companion Animals in Japan and Their Antimicrobial Resistance Patterns

2017 ◽  
Vol 70 (4) ◽  
pp. 394-398 ◽  
Author(s):  
Yuzo Tsuyuki ◽  
Goro Kurita ◽  
Yoshiteru Murata ◽  
Mieko Goto ◽  
Takashi Takahashi
2020 ◽  
Vol 65 (No. 5) ◽  
pp. 191-198
Author(s):  
H Sukur ◽  
OM Esendal

Coagulase-negative staphylococci (CoNS) are a group of commensal microorganisms residing on the skin and mucous membranes of both humans and animals. Until recently, they have been regarded as non-pathogenic to livestock and companion animals, but since then, their clinical importance in veterinary medicine has increased with the discovery of their potential pathogenic roles in animals causing skin and soft tissue infections together with spontaneous abortions and mastitis. Scientific data concerning the presence of CoNS in North Cyprus are very limited. Therefore, the purpose of the study reported herein was to investigate the presence and antimicrobial resistance patterns of CoNS species isolated from various animals presented at the Veterinary Teaching Hospital in North Cyprus between July 2018 and 2019. Staphylococci were isolated from 37.0% (87/235) of the samples submitted, within which 60.9% (53/87) and 39.1% (34/87) were identified as coagulase-positive staphylococci (CoPS) and coagulase-negative staphylococci (CoNS), respectively. Among the CoNS, S. chromogenes was the most predominantly isolated species (14/34, 41.2%), followed by S. capitis (5/34, 14.7%) and S. simulans (4/34, 11.8%). Of these 34 CoNS, 24 (70.6%) and 10 (29.4%) were identified as MRCoNS and MSCoNS, respectively. The CoNS isolates showed relatively high levels of resistance towards amoxicillin/clavulanic acid (19/34, 55.9%), tetracycline (14/34, 41.2%) and penicillin (13/34, 38.2%). In conclusion, the presence of CoNS, especially MRCoNS, and the detection of multiple drug resistant (MDR) species with a high prevalence were regarded as being important since they might limit and have negative effects on the therapeutic treatment options of staphylococcal infections in animals, and might have both public and veterinary concerns.


2015 ◽  
Vol 51 (6) ◽  
pp. 365-371 ◽  
Author(s):  
Nuno Beça ◽  
Lucinda Janete Bessa ◽  
Ângelo Mendes ◽  
Joana Santos ◽  
Liliana Leite-Martins ◽  
...  

Staphylococcus pseudintermedius is the most prevalent coagulase-positive Staphylococcus inhabitant of the skin and mucosa of dogs and cats, causing skin and soft tissue infections in these animals. In this study, coagulase-positive Staphylococcus species were isolated from companion animals, veterinary professionals, and objects from a clinical veterinary environment by using two particular culture media, Baird-Parker RPF agar and CHROMagar Staph aureus. Different morphology features of colonies on the media allowed the identification of the species, which was confirmed by performing a multiplex polymerase chain reaction (PCR). Among 23 animals, 15 (65.2%) harbored coagulase-positive Staphylococcus, being 12 Staphylococcus pseudintermedius carriers. Four out of 12 were methicillin-resistant S. pseudintermedius (MRSP). All veterinary professionals had coagulase-positive Staphylococcus (CoPS) species on their hands and two out of nine objects sampled harbored MRSP. The antimicrobial-resistance pattern was achieved for all isolates, revealing the presence of many multidrug-resistant CoPS, particularly S. pseudintermedius. The combined analysis of the antimicrobial-resistance patterns shown by the isolates led to the hypothesis that there is a possible crosscontamination and dissemination of S. aureus and S. pseudintermedius species between the three types of carriers sampled in this study that could facilitate the spread of the methicillin-resistance phenotype.


2020 ◽  
Vol 20 (2) ◽  
pp. 229-236
Author(s):  
Sepideh Keshavarz Valian ◽  
Shima Mahmoudi ◽  
Babak Pourakbari ◽  
Maryam Banar ◽  
Mohammad Taghi Haghi Ashtiani ◽  
...  

Objective: The study aimed to describe the identity and antimicrobial resistance patterns of the causative agents of bacterial meningitis in children referred to Children’s Medical Center (CMC) Hospital, Tehran, Iran. Methods: This retrospective study was performed at CMC Hospital during a six-year period from 2011 to 2016. The microbiological information of the patients with a diagnosis of bacterial meningitis was collected and the following data were obtained: patients’ age, sex, hospital ward, the results of CSF and blood cultures, and antibiotic susceptibility profiles of isolated organisms. Results: A total of 118 patients with bacterial meningitis were admitted to CMC hospital. Sixty-two percent (n=73) of the patients were male. The median age of the patients was ten months (interquartile range [IQR]: 2 months-2 years) and the majority of them (n=92, 80%) were younger than two years of age. The highest number of patients (n=47, 40%) were admitted to the surgery department. Streptococcus epidermidis was the most frequent isolated bacterium (n=27/127, 21%), followed by Klebsiella pneumoniae (n=20/127, 16%), and Staphylococcus aureus (n=16/127, 12.5%). Blood culture was positive in 28% (n=33/118) of patients. Ampicillin-sulbactam and imipenem were the most effective antibiotics against Gram-negative bacteria isolated from CSF cultures. In the case of Gram-positive organisms, ampicillinsulbactam, vancomycin, and linezolid were the best choices. Imipenem was the most active drug against Gram-negative blood pathogens. Also, ampicillin and vancomycin had the best effect on Gram-positive bacteria isolated from blood cultures. Conclusion: Results of this study provide valuable information about the antibiotic resistance profiles of the etiologic agents of childhood meningitis, which can be used for prescription of more effective empirical therapies.


2020 ◽  
Vol 20 (2) ◽  
pp. 160-166
Author(s):  
Seyedeh Hanieh Eshaghi Zadeh ◽  
Hossein Fahimi ◽  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal

Background: Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. Objective: The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. Methods: A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). Results: The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). Conclusion: The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
Teke Apalata

AbstractThe proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


2021 ◽  
Author(s):  
María Valeria Rumi ◽  
Ezequiel Nuske ◽  
Javier Mas ◽  
Andrea Argüello ◽  
Gabriel Gutkind ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document