Layout Design and Optimization of the High-Energy Pulse Flash Lamp Thermal Excitation Source

Author(s):  
Zhang Wei ◽  
Wang Guo-Wei ◽  
Yang Zheng-Wei ◽  
Song Yuan-Jia ◽  
Jin Guo-Feng ◽  
...  
Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Shengzhe Ji ◽  
Wenfa Huang ◽  
Tao Feng ◽  
Long Pan ◽  
Jiangfeng Wang ◽  
...  

In this paper, a model to predict the thermal effects in a flashlamp-pumped direct-liquid-cooled split-disk Nd:LuAG ceramic laser amplifier has been presented. In addition to pumping distribution, the model calculates thermal-induced wavefront aberration as a function of temperature, thermal stress and thermal deformation in the gain medium. Experimental measurements are carried out to assess the accuracy of the model. We expect that this study will assist in the design and optimization of high-energy lasers operated at repetition rate.


2000 ◽  
Vol 25 (8) ◽  
pp. 587 ◽  
Author(s):  
E. Zeek ◽  
R. Bartels ◽  
M. M. Murnane ◽  
H. C. Kapteyn ◽  
S. Backus ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tamires K. Oishi ◽  
Jorge A. W. Gut

Abstract Continuous pasteurization of liquid foods has to provide the desired lethality level to guarantee food safety with minimum degradation of quality attributes (sensorial and nutritional characteristics) and high energy efficiency. To optimize quality and cost, a thermal process should be modeled considering flow, heat transfer and mass dispersion principles; however, flow through helical tubes and microwave heating require a complex 3D multiphysics approach. Herein a simplified 2D approach is presented to model a hybrid pasteurization unit with conventional and microwave heating under laminar flow to predict axial and radial distributions of temperature and residual activity of a microorganism or enzyme. A study case of 20 °Brix mango puree (power law fluid) processing is used to test the model based on an existing pilot plant unit. Results were useful to compare conventional and microwave heating regarding the process sterilization value and model can be used for process analysis, design and optimization.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3879 ◽  
Author(s):  
Pil Sang ◽  
Junseok Heo ◽  
Hui Park ◽  
Hyoung Baac

We demonstrate a photoacoustic sensor capable of measuring high-energy nanosecond optical pulses in terms of temporal width and energy fluence per pulse. This was achieved by using a hybrid combination of a carbon nanotube-polydimethylsiloxane (CNT-PDMS)-based photoacoustic transmitter (i.e., light-to-sound converter) and a piezoelectric receiver (i.e., sound detector). In this photoacoustic energy sensor (PES), input pulsed optical energy is heavily absorbed by the CNT-PDMS composite film and then efficiently converted into an ultrasonic output. The output ultrasonic pulse is then measured and analyzed to retrieve the input optical characteristics. We quantitatively compared the PES performance with that of a commercial thermal energy meter. Due to the efficient energy transduction and sensing mechanism of the hybrid structure, the minimum-measurable pulsed optical energy was significantly lowered, ~157 nJ/cm2, corresponding to 1/760 of the reference pyroelectric detector. Moreover, despite the limited acoustic frequency bandwidth of the piezoelectric receiver, laser pulse widths over a range of 6–130 ns could be measured with a linear relationship to the ultrasound pulse width of 22–153 ns. As CNT has a wide electromagnetic absorption spectrum, the proposed pulsed sensor system can be extensively applied to high-energy pulse measurement over visible through terahertz spectral ranges.


2014 ◽  
Author(s):  
Doruk Engin ◽  
Ibraheem Darab ◽  
John Burton ◽  
Jean-Luc Fouron ◽  
Frank Kimpel ◽  
...  

2019 ◽  
Vol 214 ◽  
pp. 02019
Author(s):  
V. Daniel Elvira

Detector simulation has become fundamental to the success of modern high-energy physics (HEP) experiments. For example, the Geant4-based simulation applications developed by the ATLAS and CMS experiments played a major role for them to produce physics measurements of unprecedented quality and precision with faster turnaround, from data taking to journal submission, than any previous hadron collider experiment. The material presented here contains highlights of a recent review on the impact of detector simulation in particle physics collider experiments published in Ref. [1]. It includes examples of applications to detector design and optimization, software development and testing of computing infrastructure, and modeling of physics objects and their kinematics. The cost and economic impact of simulation in the CMS experiment is also presented. A discussion on future detector simulation needs, challenges and potential solutions to address them is included at the end.


Sign in / Sign up

Export Citation Format

Share Document