A Prototype Implementation of OpenCL for SX Vector Systems

Author(s):  
Hiroyuki Takizawa ◽  
Ryusuke Egawa ◽  
Hiroaki Kobayashi
Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 76
Author(s):  
Matthias T. Ochmann ◽  
Zoltán Ivics

Sleeping Beauty (SB) is a transposon system that has been widely used as a genetic engineering tool. Central to the development of any transposon as a research tool is the ability to integrate a foreign piece of DNA into the cellular genome. Driven by the need for efficient transposon-based gene vector systems, extensive studies have largely elucidated the molecular actors and actions taking place during SB transposition. Close transposon relatives and other recombination enzymes, including retroviral integrases, have served as useful models to infer functional information relevant to SB. Recently obtained structural data on the SB transposase enable a direct insight into the workings of this enzyme. These efforts cumulatively allowed the development of novel variants of SB that offer advanced possibilities for genetic engineering due to their hyperactivity, integration deficiency, or targeting capacity. However, many aspects of the process of transposition remain poorly understood and require further investigation. We anticipate that continued investigations into the structure–function relationships of SB transposition will enable the development of new generations of transposition-based vector systems, thereby facilitating the use of SB in preclinical studies and clinical trials.


2021 ◽  
Vol 1 (2) ◽  
pp. 340-364
Author(s):  
Rui Araújo ◽  
António Pinto

Along with the use of cloud-based services, infrastructure, and storage, the use of application logs in business critical applications is a standard practice. Application logs must be stored in an accessible manner in order to be used whenever needed. The debugging of these applications is a common situation where such access is required. Frequently, part of the information contained in logs records is sensitive. In this paper, we evaluate the possibility of storing critical logs in a remote storage while maintaining its confidentiality and server-side search capabilities. To the best of our knowledge, the designed search algorithm is the first to support full Boolean searches combined with field searching and nested queries. We demonstrate its feasibility and timely operation with a prototype implementation that never requires access, by the storage provider, to plain text information. Our solution was able to perform search and decryption operations at a rate of, approximately, 0.05 ms per line. A comparison with the related work allows us to demonstrate its feasibility and conclude that our solution is also the fastest one in indexing operations, the most frequent operations performed.


2021 ◽  
Vol 22 (14) ◽  
pp. 7545
Author(s):  
Myriam Sainz-Ramos ◽  
Idoia Gallego ◽  
Ilia Villate-Beitia ◽  
Jon Zarate ◽  
Iván Maldonado ◽  
...  

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Takumasa Ishioka ◽  
Kazuki Aiura ◽  
Ryota Shiina ◽  
Tatsuya Fukui ◽  
Tomohiro Taniguchi ◽  
...  

Yeast ◽  
1985 ◽  
Vol 1 (2) ◽  
pp. 83-138 ◽  
Author(s):  
Stephen A. Parent ◽  
Carol M. Fenimore ◽  
Keith A. Bostian

Sign in / Sign up

Export Citation Format

Share Document