Landslide Risk and Mitigation Policies in Campania Region (Italy)

2013 ◽  
pp. 209-216 ◽  
Author(s):  
Italo Giulivo ◽  
Fiorella Galluccio ◽  
Fabio Matano ◽  
Lucia Monti ◽  
Carlo Terranova
2003 ◽  
Vol 3 (5) ◽  
pp. 457-468 ◽  
Author(s):  
G. Iovine ◽  
S. Di Gregorio ◽  
V. Lupiano

Abstract. On 15–16 December 1999, heavy rainfall severely stroke Campania region (southern Italy), triggering numerous debris flows on the slopes of the San Martino Valle Caudina-Cervinara area. Soil slips originated within the weathered volcaniclastic mantle of soil cover overlying the carbonate skeleton of the massif. Debris slides turned into fast flowing mixtures of matrix and large blocks, downslope eroding the soil cover and increasing their original volume. At the base of the slopes, debris flows impacted on the urban areas, causing victims and severe destruction (Vittori et al., 2000). Starting from a recent study on landslide risk conditions in Campania, carried out by the Regional Authority (PAI –Hydrogeological setting plan, in press), an evaluation of the debris-flow susceptibility has been performed for selected areas of the above mentioned villages. According to that study, such zones would be in fact characterised by the highest risk levels within the administrative boundaries of the same villages ("HR-zones"). Our susceptibility analysis has been performed by applying SCIDDICA S3–hex – a hexagonal Cellular Automata model (von Neumann, 1966), specifically developed for simulating the spatial evolution of debris flows (Iovine et al., 2002). In order to apply the model to a given study area, detailed topographic data and a map of the erodable soil cover overlying the bedrock of the massif must be provided (as input matrices); moreover, extent and location of landslide source must also be given. Real landslides, selected among those triggered on winter 1999, have first been utilised for calibrating SCIDDICA S3–hex and for defining "optimal" values for parameters. Calibration has been carried out with a GIS tool, by quantitatively comparing simulations with actual cases: optimal values correspond to best simulations. Through geological evaluations, source locations of new phenomena have then been hypothesised within the HR-zones. Initial volume for these new cases has been estimated by considering the actual statistics of the 1999 landslides. Finally, by merging the results of simulations, a deterministic susceptibility zonation of the considered area has been obtained. In this paper, aiming at illustrating the potential for debris-flow hazard analyses of the model SCIDDICA S3–hex, a methodological example of susceptibility zonation of the Vallicelle HR-zone is presented.


2017 ◽  
Author(s):  
Marco Uzielli ◽  
Guido Rianna ◽  
Fabio Ciervo ◽  
Paola Mercogliano ◽  
Unni K. Eidsvig

Abstract. In recent years, landslide events have extensively affected pyroclastic covers of the Campania Region in southern Italy, causing victims and conspicuous economic damages. Due to the high criticality of the area, a proper assessment of future variations in landslide occurrences and related risk is crucial for policy-makers, administrators and infrastructure stakeholders. This paper addresses work performed within the FP7 INTACT project, having the goal to provide a risk framework for critical infrastructure while accounting for climate change. The study is a part of the testing and application of the framework in the Campania region, assessing the temporal variation in landslide hazard specifically for a section of the Autostrada A3 Salerno–Napoli motorway, which runs across the toe of the Monte Albino relief in the Municipality of Nocera Inferiore. In the study, hazard is defined as the yearly probability of a spatial location within a study area to be affected by landslide runout given the occurrence of rainfall-related triggering conditions. Hence, hazard depends both on the likelihood of rainfall-induced landslide triggering within the study area and the likelihood that the specific location will be affected following landslide runout. Landslide triggering probability is calculated through the application of Bayesian theory and relying on local historical rainfall data. Temporal variations in triggering probability due to climate change are estimated from present-day to the year 2100 through the characterization of rainfall patterns and related uncertainties using the EURO-CORDEX Ensemble. Reach probability, defining the probability that a given spatial location is affected by debris flows, is calculated spatially through numerical simulation of landslide runout. The temporal evolution of hazard is investigated specifically in the proximity of the motorway, as to provide a quantitative support for landslide risk analysis.


2012 ◽  
Vol 12 (4) ◽  
pp. 905-926 ◽  
Author(s):  
D. Di Martire ◽  
M. De Rosa ◽  
V. Pesce ◽  
M. A. Santangelo ◽  
D. Calcaterra

Abstract. Results deriving from a research focused on the interplay between landslides and urban development are presented here, with reference to two densely populated settings located in the Campania region, Italy: the city of Naples and the island of Ischia. Both areas suffer adverse consequences from various types of landslides since at least 2000 yr. Our study evidences that, despite the long history of slope instabilities, the urban evolution, often illegal, disregarded the high landslide propensity of the hillsides; thus, unsafe lands have been occupied, even in recent years, when proper and strict rules have been enacted to downgrade the landslide risk. It is finally argued that future guidelines should not be entirely based upon physical countermeasures against mass movements. On the contrary, national and local authorities should enforce the territorial control, obliging citizens to respect the existing regulations and emphasizing the role of alternative, non-structural solutions.


Author(s):  
Jennifer Eno Louden ◽  
Elena Vaudreuil ◽  
Chelsea Queen ◽  
Marisa Eve Alvarez ◽  
Araceli Garcia
Keyword(s):  

2013 ◽  
Author(s):  
Giovanni Iolascon ◽  
Annarita Capaldo ◽  
Valentina Orlando ◽  
Enrica Menditto ◽  
Francesca Gimigliano

2019 ◽  
Vol 16 (3) ◽  
Author(s):  
Wisyanto

Landslides have occurred in various places in Indonesia. Likewise with West Java, there were many regions that has experienced repeated landslides. Having many experience of occurrences of landslides, we should have had a good landslide risk reduction program. Indeed, the incidence of landslides depends on many variables. Due to that condition, it may that a region would have different variable with another region. So it is impossible to generalize the implementation of a mitigation technology for all areas prone to landslides. Research of the Cililin's landslide is to anticipate the next disasters that may happen in around the area of 2013 Cililin Landslide. Through observation lithological conditions, water condition, land cover and landscape, as well as consideration of wide dimension of the building footing, the distance of building to the slopes and so forth, it has been determined some efforts of disaster risk reduction in the area around the landslide against the occurrence of potential landslide in the future.Bencana tanah longsor telah terjadi di berbagai tempat di Indonesia. Demikian halnya dengan Jawa Barat, tidak sedikit daerahnya telah berulang kali mengalami longsor. Seharusnya dengan telah banyaknya kejadian longsor, kita mampu mengupayakan program penurunan risiko longsor secara baik. Memang kejadian longsor bergantung pada banyak variabel, dimana dari satu daerah dengan daerah yang lain akan sangat memungkinkan mempunyai variabel yang berbeda, sehingga tidak mungkin kita membuat generalisasi penerapan suatu teknologi mitigasinya untuk semua daerah rawan longsor. Penelitian longsor di Cililin dilakukan untuk mengantisipasi terjadinya bencana di sekitar daerah Longsor Cililin 2013 yang lalu. Melalui pengamatan kondisi litologi, keairan, tutupan lahan dan bentang alam yang ada, serta pertimbangan akan dimensi luas pijakan bangunan, jarak batas bangunan dengan lereng dan lain sebagainya, telah ditentukan beberapa upaya penurunan risiko bencana di daerah sekitar longsor terhadap potensi kejadian longsor dimasa mendatang.Keywords: Landslide, risk reduction, footing of building, Cililin


Sign in / Sign up

Export Citation Format

Share Document