Constructing Target Concept in Multiple Instance Learning Using Maximum Partial Entropy

Author(s):  
Tao Xu ◽  
David Chiu ◽  
Iker Gondra
2017 ◽  
Author(s):  
◽  
Changzhe Jiao

The multiple instance learning problem addresses the case where training data comes with label ambiguity, i.e., the learner has access only to inaccurately labeled data. For example, in target detection from remotely sensed hyperspectral imagery, targets are usually sub-pixel and the ground truthing of the targets according to GPS coordinates could drift across several meters. Thus the locations of the targets corresponding to the hyperspectral image are inaccurate. Training a supervised algorithm or extracting target signatures from this kind of labels is intractable. This dissertation investigates the topic target concept learning from ambiguously labeled data comprehensively; reviews and proposes several methods that either learn a set of representative or discriminative target concepts. The multiple instance hybrid estimator (MI-HE) maximizes the response of the hybrid detector under a generalized mean framework and estimates a set of discriminative target concepts. MI-HE adopts a linear mixture model and iterates between estimating a set of discriminative target and non-target signatures and solving a sparse unmixing problem. MI-HE preserves bag-level label information for each positive bag and is able to estimate a target concept that is commonly shared among positive bags. Furthermore, MI-HE has the potential to learn multiple signatures to address signature variability. After learning target concept, signature based detector could be applied for target detection. The presented algorithms were tested in many applications including simulated and real hyperspectral target detection, heartbeat characterization from ballistocardiogram signals and tree species classification from remotely sensed data. The presented algorithms were proven to be effective in learning high-quality target signatures and consistently achieved superior performance over the state-of-the-art comparison algorithms.


2021 ◽  
Author(s):  
Marc-Henri Bleu-Laine ◽  
Tejas G. Puranik ◽  
Dimitri N. Mavris ◽  
Bryan Matthews

Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marleen M. Nieboer ◽  
Luan Nguyen ◽  
Jeroen de Ridder

AbstractOver the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved version of our Multiple Instance Learning-based method to study the effect of somatic non-coding SVs disrupting boundaries of TADs and CTCF loops in 1646 cancer genomes. We demonstrate that svMIL2 predicts pathogenic non-coding SVs with an average AUC of 0.86 across 12 cancer types, and identifies non-coding SVs affecting well-known driver genes. The disruption of active (super) enhancers in open chromatin regions appears to be a common mechanism by which non-coding SVs exert their pathogenicity. Finally, our results reveal that the contribution of pathogenic non-coding SVs as opposed to driver SNVs may highly vary between cancers, with notably high numbers of genes being disrupted by pathogenic non-coding SVs in ovarian and pancreatic cancer. Taken together, our machine learning method offers a potent way to prioritize putatively pathogenic non-coding SVs and leverage non-coding SVs to identify driver genes. Moreover, our analysis of 1646 cancer genomes demonstrates the importance of including non-coding SVs in cancer diagnostics.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 527
Author(s):  
Vijay Vyas Vadhiraj ◽  
Andrew Simpkin ◽  
James O’Connell ◽  
Naykky Singh Singh Ospina ◽  
Spyridoula Maraka ◽  
...  

Background and Objectives: Thyroid nodules are lumps of solid or liquid-filled tumors that form inside the thyroid gland, which can be malignant or benign. Our aim was to test whether the described features of the Thyroid Imaging Reporting and Data System (TI-RADS) could improve radiologists’ decision making when integrated into a computer system. In this study, we developed a computer-aided diagnosis system integrated into multiple-instance learning (MIL) that would focus on benign–malignant classification. Data were available from the Universidad Nacional de Colombia. Materials and Methods: There were 99 cases (33 Benign and 66 malignant). In this study, the median filter and image binarization were used for image pre-processing and segmentation. The grey level co-occurrence matrix (GLCM) was used to extract seven ultrasound image features. These data were divided into 87% training and 13% validation sets. We compared the support vector machine (SVM) and artificial neural network (ANN) classification algorithms based on their accuracy score, sensitivity, and specificity. The outcome measure was whether the thyroid nodule was benign or malignant. We also developed a graphic user interface (GUI) to display the image features that would help radiologists with decision making. Results: ANN and SVM achieved an accuracy of 75% and 96% respectively. SVM outperformed all the other models on all performance metrics, achieving higher accuracy, sensitivity, and specificity score. Conclusions: Our study suggests promising results from MIL in thyroid cancer detection. Further testing with external data is required before our classification model can be employed in practice.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 949
Author(s):  
Zhen Li ◽  
Xiaoyan Zhang

As a further extension of the fuzzy set and the intuitive fuzzy set, the interval-valued intuitive fuzzy set (IIFS) is a more effective tool to deal with uncertain problems. However, the classical rough set is based on the equivalence relation, which do not apply to the IIFS. In this paper, we combine the IIFS with the ordered information system to obtain the interval-valued intuitive fuzzy ordered information system (IIFOIS). On this basis, three types of multiple granulation rough set models based on the dominance relation are established to effectively overcome the limitation mentioned above, which belongs to the interdisciplinary subject of information theory in mathematics and pattern recognition. First, for an IIFOIS, we put forward a multiple granulation rough set (MGRS) model from two completely symmetry positions, which are optimistic and pessimistic, respectively. Furthermore, we discuss the approximation representation and a few essential characteristics for the target concept, besides several significant rough measures about two kinds of MGRS symmetry models are discussed. Furthermore, a more general MGRS model named the generalized MGRS (GMGRS) model is proposed in an IIFOIS, and some important properties and rough measures are also investigated. Finally, the relationships and differences between the single granulation rough set and the three types of MGRS are discussed carefully by comparing the rough measures between them in an IIFOIS. In order to better utilize the theory to realistic problems, an actual case shows the methods of MGRS models in an IIFOIS is given in this paper.


Sign in / Sign up

Export Citation Format

Share Document