Design of Driveline Test Bench for Noise and Vibration Harshness Improvement of Automotive Chassis Components System

Author(s):  
Kee Joo Kim ◽  
Si-Tae Won ◽  
Kyung Shik Kim ◽  
Byung-Ik Choi ◽  
Jun-Hyub Park ◽  
...  
2021 ◽  
Vol 263 (5) ◽  
pp. 1833-1844
Author(s):  
Takuma Tanioka ◽  
Junji Yoshida

In this study, we propose an analytical method consisting of Operational TPA (OTPA) and Component TPA (CTPA) to predict the vehicle interior noise and vibration without the vehicle operational test in case the noise source such as engine was modified. In the proposed method, the blocked force of the noise source was obtained at a test bench and the vibration at the source attachment point on the vehicle was calculated by CTPA. After then, the response point signal (interior noise / vibration) is estimated from several reference point signals including the calculated vibration by OTPA. For the verification of this method, a simple vehicle model which is composed of four tires and a motor was prepared in addition to a test bench. OTPA was firstly applied to the vehicle model to analyze the contribution from tires and a motor to the body vibration (response point). The blocked force of a modified motor was obtained by CTPA at the test bench and the force was used to predict the response point by OTPA. Finally, the estimated interior vibration was compared with the actual measured response point vibration when the motor was replaced on the vehicle model and the accuracy was verified.


Author(s):  
A. Z. A. Mazlan ◽  
M. H. A. Satar ◽  
M. H. Hamdan ◽  
M. S. Md. Isa ◽  
S. Man ◽  
...  

The automotive heating and ventilating air condition (HVAC) system, when vibrating, can generate various types of noises such as humming, hissing, clicking and air-rushes. These noises can be characterised to determine their root causes. In this study, the humming-type noise is taken into consideration whereby the noise and vibration characteristics are measured from various HVAC components such as power steering pump, compressor and air conditional pipe. Four types of measurement sensors were used in this study - tachometer for rpm tracking; accelerometer for the vibration microphone for the noise; and sound camera for the visualization measurement. Two types of operating conditions were taken into consideration - they were “idle” (850 rpm) and “running” (850-1400 rpm) conditions. A constant blower speed was applied for both conditions. The result shows that the humming noises can be determined at the frequency range of 300-350 Hz and 150-250 Hz for both idle and running conditions, respectively. The vibration of the power steering pump shows the worst acceleration of 1.8 m/s2 at the frequency range of 150-250 Hz, compared to the compressor and air conditional pipe. This result was validated with the 3D colour order and sound camera analyses, in which the humming noise colour mapping shows dominance in this frequency range.  


2003 ◽  
Vol 9 (1s) ◽  
pp. 105-108
Author(s):  
Yu.A. Prokopenko ◽  
◽  
E.V. Strelchenko ◽  
Keyword(s):  

CIM Journal ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 111-117
Author(s):  
Marcel Laflamme ◽  
Pierre Marcotte ◽  
Jérôme Boutin ◽  
Sylvain Ouellette ◽  
Gilles LeBlanc

2014 ◽  
Vol 42 (1) ◽  
pp. 2-15
Author(s):  
Johannes Gültlinger ◽  
Frank Gauterin ◽  
Christian Brandau ◽  
Jan Schlittenhard ◽  
Burkhard Wies

ABSTRACT The use of studded tires has been a subject of controversy from the time they came into market. While studded tires contribute to traffic safety under severe winter conditions by increasing tire friction on icy roads, they also cause damage to the road surface when running on bare roads. Consequently, one of the main challenges in studded tire development is to reduce road wear while still ensuring a good grip on ice. Therefore, a research project was initiated to gain understanding about the mechanisms and influencing parameters involved in road wear by studded tires. A test method using the institute's internal drum test bench was developed. Furthermore, mechanisms causing road wear by studded tires were derived from basic analytical models. These mechanisms were used to identify the main parameters influencing road wear by studded tires. Using experimental results obtained with the test method developed, the expected influences were verified. Vehicle driving speed and stud mass were found to be major factors influencing road wear. This can be explained by the stud impact as a dominant mechanism. By means of the test method presented, quantified and comparable data for road wear caused by studded tires under controllable conditions can be obtained. The mechanisms allow predicting the influence of tire construction and variable operating conditions on road wear.


2013 ◽  
Vol 20 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Wojciech Moćko

Abstract The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient


2011 ◽  
Vol 36 (1) ◽  
pp. 161-171
Author(s):  
Wiktor Zawieska ◽  
Dariusz Pleban

Abstract In 2010, the Central Institute for Labour Protection - National Research Institute celebrated the 60th anniversary of its activity. Primary objectives of the Institute have been and continue to be the protection of employees against any hazards at work stations. Among the numerous hazards, vibroacoustic ones are becoming prevailing. Therefore, one can now dare to say that the 60 years of activity of the Central Institute for Labour Protection have also meant 60 years of preventing noise and vibration in the working environment. For those 60 years of activity, Central Institute for Labour Protection has been associated with outstanding acousticians and vibration specialists. The first chairperson of the Scientific Council of the Central Institute for Labour Protection was Professor Ignacy Malecki, one of the most outstanding Polish scientists. Chairpersons of the Council have also included Professor Adam Lipowczan and Professor Zbigniew Engel and the members of the Council have included Professor Stefan Ziemba and Professor Jerzy Sadowski.


Author(s):  
Alexandre de Macêdo Wahrhaftig ◽  
Reyolando Brasil ◽  
Gabriela Silva Correia Cordeiro

Author(s):  
Taiana Cortes ◽  
Valéria Leite ◽  
Guilherme Ribeiro ◽  
Débora Cristina Menezes Silva

Sign in / Sign up

Export Citation Format

Share Document