1997 ◽  
Vol 122 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Joshua D. Klein ◽  
William S. Conway ◽  
Bruce D. Whitaker ◽  
Carl E. Sams

`Golden Delicious' apples (Malus domestica Borkh.) were treated after harvest with heat (air at 38 °C for 4 days or 42 °C for 1 day) or 2% CaCl2 (w/v; applied as a dip or pressure-infiltrated) or a combination of the two and stored at 0 °C for ≤6 months. Decay caused by Botrytis cinerea Pers.:Fr. after inoculation to a depth of 2 mm with a conidial suspension virtually was eliminated in stored fruit heated at 38 °C, regardless of Ca treatment. Apples punctured to a depth of 0.5 mm (but not 2 mm) and inoculated with B. cinerea on removal from storage were almost completely protected from poststorage decay if they had previously been pressure-infiltrated with 2% CaCl2, regardless of the heat regime. Heating fruit at 42 °C and dipping in 2% CaCl2 were only partially effective in preventing decay from either pre- or poststorage inoculations. Fruit firmness was not related to resistance to decay.


1982 ◽  
Vol 3 ◽  
pp. 343
Author(s):  
V.R. Barbash ◽  
I.A. Zotikov

The heat regime and dynamics of the Antarctic ice sheet are studied using numerical modelling for two flow lines, one of which passes Vostok station and the other Byrd station. A two-dimensional non-steady heat-transfer equation with an energy dissipation term was used. The study consists of two parts. The first is a study of velocity and temperature distributions within the glacier under steady-state conditions. The second study was performed assuming surface temperature changes intended to model palaeoclimatic changes for the last 100 ka and also to model future climate changes due to a possible "greenhouse" effect. Computer numerical modelling shows that the Antarctic ice sheet retains a record of the climatic temperature minimum 18 ka BP. Numerical modelling of the greenhouse effect assumes a temperature increasing by 10 deg within the next 100 a; its influence increases after this even if the surface temperature then remains the same for the next 20 ka. It is shown that for the next 1 ka the temperature wave will penetrate only a thin surface layer of the ice. Even in 20 ka the bottom temperature of the ice sheet will still be unchanged. Small increases of ice velocity can produce ice-sheet thinning of the order of 10 mm a−1.


1990 ◽  
Vol 14 ◽  
pp. 329
Author(s):  
Vitaly Barbash

A nonstationary mathematical model of thermics and dynamics of the Antarctic ice sheet has been developed, taking into consideration the influence of long-term changes of climate. The influence of climatic variations during the last 100 000 years on the temperature field within the ice sheet has been analysed. Information about climatic changes is based on paleographic data and isotope analyses of ice samples from bore holes at Vostok and Byrd stations. The input data used include results from field surveys of accumulation, temperatures of upper surface, relief of the base and thickness of the ice sheet along the flowlines in the western and eastern parts of the ice sheet, as well as experimental data on ice rheology. The computations show that traces of the climatic minimum that took place about 18 000 years ago are found in the temperature field of the Antarctic ice sheet. The model developed has proved that warming of climate due to the “greenhouse effect” leads to significant changes in the thermal regime in the upper parts of the ice sheet, but will not lead to conditions threatening bottom layers.


Refractories ◽  
1962 ◽  
Vol 3 (11-12) ◽  
pp. 401-403
Author(s):  
M. Z. Shvartsman
Keyword(s):  

Desalination ◽  
1983 ◽  
Vol 46 (1-3) ◽  
pp. 203-210 ◽  
Author(s):  
A.K. Kusavsky ◽  
Y.P. Shulika

2020 ◽  
Author(s):  
Eugene Muzylev ◽  
Zoya Startseva ◽  
Elena Volkova ◽  
Eugene Vasilenko

<p>The water availability of agricultural arid regions can be assessed at presence using the physical-mathematical model of water and heat exchange between land surface and atmosphere LSM (Land Surface Model) adapted to satellite-derived estimates of meteorological and vegetation characteristics. The LSM is designed to calculate soil water content W, evapotranspiration Ev, vertical heat fluxes and other water and heat regime elements. Soil and vegetation characteristics were used in the LSM as parameters and meteorological characteristics were utilized as input variables.</p><p>The case study was carried out for the territory of the Saratov and Volgograd Trans-Volga region (the left-bank part of the Saratov and Volgograd regions) of 66600 km<sup>2</sup> for the vegetation seasons 2016-2018.</p><p>The satellite measurement data from radiometers AVHRR/NOAA, SEVIRI/Meteosat-10, -11, -8, and MSU-MR/Meteor-M No. 2 in visible and IR ranges were thematic processed to built estimates of vegetation index NDVI, emissivity E, vegetation cover fraction B, leaf index LAI, land surface temperature LST and precipitation.</p><p>LAI and B estimates were obtained using empirical dependencies on NDVI. The adequacy of the LAI and B estimates obtained from all sensor data was verified when comparing the LAI time behavior built for named vegetation seasons. Errors of determining B and LAI were 15 and 20%, respectively.</p><p>Satellite-derived estimates of daily, decadal and monthly precipitation sums for each pixel were obtained using the Multi Threshold Method (MTM) for detecting clouds, identifying its types allocating precipitation zones and determining their maximum intensity. The MTM is based on the developed algorithm of the transition from the assessment of precipitation intensity to the assessment of their daily amounts. Testing of the method was carried out when comparing these amounts with observed at meteorological stations. The probability of satellite-detected precipitation zones corresponded to the actual ones was ~ 80% for all radiometers.</p><p>Based on the MTM, computational algorithm to evaluate the LST was developed and verified on the study region data. Comparison of ground-measured and satellite-derived LST showed that the latter estimates for the overwhelming number of observation turned out to be comparable in accuracy with each other and with the ground-based data.</p><p>Calculations of water and heat regime elements (being the final products of the simulation) were carried out when replacing ground-based estimates of precipitation, LST, LAI and B in the LSM by satellite-derived ones at each time step in all nodes of the computational grid. The efficiency of such replacement procedures was confirmed by comparing measured and calculated values of W and Ev (the difference between them didn’t exceed 15% for W and 25% for Ev).</p><p>The possibility of using soil surface moisture estimates obtained from all-weather measurements by the scatterometer ASCAT/MetOp in the microwave range when simulating soil water content was also revealed. These estimates may use to set initial conditions for the vertical soil water transfer equation, as well as for calculating evaporation from the soil surface and the subsequent formation of the upper boundary condition for this equation.</p><p>As a summary, the described approach can be considered as a method for assessing the water availability for agricultural arid region.</p>


1978 ◽  
Vol 35 (7) ◽  
pp. 405-408
Author(s):  
K. G. Mugarab-Samedi ◽  
M. A. Babaev ◽  
M. M. Zatulovskii

2015 ◽  
Vol 26 (3) ◽  
pp. 336-345
Author(s):  
G. P. Vasil’ev ◽  
V. A. Lichman ◽  
N. V. Peskov ◽  
N. L. Semendyaeva
Keyword(s):  

1990 ◽  
Vol 14 ◽  
pp. 329-329
Author(s):  
Vitaly Barbash

A nonstationary mathematical model of thermics and dynamics of the Antarctic ice sheet has been developed, taking into consideration the influence of long-term changes of climate.The influence of climatic variations during the last 100 000 years on the temperature field within the ice sheet has been analysed. Information about climatic changes is based on paleographic data and isotope analyses of ice samples from bore holes at Vostok and Byrd stations.The input data used include results from field surveys of accumulation, temperatures of upper surface, relief of the base and thickness of the ice sheet along the flowlines in the western and eastern parts of the ice sheet, as well as experimental data on ice rheology.The computations show that traces of the climatic minimum that took place about 18 000 years ago are found in the temperature field of the Antarctic ice sheet.The model developed has proved that warming of climate due to the “greenhouse effect” leads to significant changes in the thermal regime in the upper parts of the ice sheet, but will not lead to conditions threatening bottom layers.


Sign in / Sign up

Export Citation Format

Share Document