Gas-Phase Atomic Metal Cations. Ligand Binding Energies, Oxidation Chemistry and Catalysis

Author(s):  
Manfred M. Kappes ◽  
Ralph H. Staley
ChemInform ◽  
1988 ◽  
Vol 19 (39) ◽  
Author(s):  
L. OPERTI ◽  
E. C. TEWS ◽  
B. S. FREISER

2007 ◽  
Vol 26 (6) ◽  
pp. 1523-1530 ◽  
Author(s):  
Marc-Etienne Moret ◽  
Peter Chen

1988 ◽  
Vol 110 (12) ◽  
pp. 3847-3853 ◽  
Author(s):  
Lorenza. Operti ◽  
Edward C. Tews ◽  
Ben S. Freiser

Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


2015 ◽  
Vol 17 (22) ◽  
pp. 14636-14646 ◽  
Author(s):  
Grant E. Johnson ◽  
Astrid Olivares ◽  
David Hill ◽  
Julia Laskin

Loss of substituted phosphine ligands is strongly correlated with the electron donating ability of the phosphorous lone pair. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3 < PPh2Cy < PPhCy2 < PCy3.


2010 ◽  
Vol 88 (8) ◽  
pp. 759-768 ◽  
Author(s):  
Al Mokhtar Lamsabhi ◽  
Otilia Mó ◽  
Manuel Yáñez

The association of Ca2+ and Cu2+ to serine was investigated by means of B3LYP DFT calculations. The [serine–M]2+ (M = Ca, Cu) potential energy surfaces include, as does the neutral serine, a large number of conformers, in which a drastic reorganization of the electron density of the serine moiety is observed. This leads to significant changes in the number and strength of the intramolecular hydrogen bonds existing in the neutral serine tautomers. In some cases, a proton is transferred from the carboxylic OH group to the amino group and accordingly, some of the more stable [serine–M]2+ complexes can be viewed as the result of the interaction of the zwiterionic form of serine with the doubly charged metal ion. Whereas the interaction between Ca2+ and serine is essentially electrostatic, that between Cu2+ and serine has a non-negligible covalent character, reflected in larger electron densities at the bond critical points between the metal and the base, in the negative values of the electron density between the two interacting systems, and in much larger Cu2+ than Ca2+ binding energies. More importantly, the interaction with Cu2+ is followed by a partial oxidation of the base, which is not observed when the metal ion is Ca2+. The main consequence is that in Cu2+ complexes a significant acidity enhancement of the serine moiety takes place, which strongly favors the deprotonation of the [serine–Cu]2+ complexes. This is not the case for Ca2+ complexes. Thus, [serine–Ca]2+ complexes, like those formed by urea, thiourea, selenourea, or glycine, should be detected in the gas phase. Conversely, the complexes with Cu2+ should deprotonate spontaneously and therefore only [(serine–H)–Cu]+ monocations should be experimentally accessible.


Sign in / Sign up

Export Citation Format

Share Document