Application of Computational Mass Transfer (III): Adsorption Process

Author(s):  
Kuo-Tsong Yu ◽  
Xigang Yuan
RSC Advances ◽  
2015 ◽  
Vol 5 (28) ◽  
pp. 22080-22090 ◽  
Author(s):  
Haoyu Shen ◽  
Zhejun Wang ◽  
Ameng Zhou ◽  
Junliang Chen ◽  
Meiqin Hu ◽  
...  

Tetraethylenepentamine-functionalized core–shell structured nanomagnetic Fe3O4 polymers (TEPA-Fe3O4-NMPs) with different amounts of magnetic core were synthesized and fully characterized. The magnetic core might favor mass transfer accelerating the adsorption process.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 111-117 ◽  
Author(s):  
S. Ouvrard ◽  
M.-O. Simonnot ◽  
M. Sardin

Arsenic can be selectively removed from water through adsorption on a natural manganese oxide. This paper presents some of the key parameters controlling such a process. Both production and regeneration steps were studied and the influence of three main controlling parameters was put to light. The water pH greatly influenced the adsorption capacity. Low water pH highly improved the treatment. The adsorption being under mass transfer limitation, flow rate influence was measured and optimization solutions were proposed. Finally, the impact of the regeneration procedure was evaluated on the adsorbent stability. It gave good arsenic elution results but the caustic elution step generated fine particles that could not be avoided. The following neutralization could however be adjusted in order to minimize further adsorbent dissolution.


2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Dewanto Harjunowibowo ◽  
Dina Nur Adilah ◽  
Dwi Teguh Rahardjo ◽  
Danar S. Wijayanto ◽  
Fredy Surahmanto ◽  
...  

The density of adsorbent bed significantly contributed to solar cooling performance (COP). The density determines how well the heat and mass transfer are. Besides that, the COP is also determined by ambient temperature. This research aims to investigate the affect of temperature of a connecting pipe, as a representative of different ambient temperature against a solar cooling machine performance. The experiment will show in what condition a solar cooling is going to have a better cooling result. The data used in this case was taken experimentally and conducted using a solar cooling machine equipped with temperature measurement units such as thermocouple logger. For cold ambient temperature, in adsorption process, refrigerant vapour flows to the generator through the connecting pipe cooled by water and kept steady. The results show that the COP, heat and mass transfer of adsorbent bed of the system in the adsorption process on a warm condition are better than in a cold environment. In the warm condition the COP system is 0.24, the heat transfer rate is 0.06 °C/minute, and the mass transfer rate is 1.09 ml/minute. Whereas, in the cold condition the COP system is 0.23, the heat transfer rate is 0.05 °C/minute, and the mass transfer rate is 1.04 ml/minute. 


Author(s):  
E. I. Akulinin ◽  
D. S. Dvoretsky ◽  
S. I. Dvoretsky

For mass transfer cyclic processes in the “adsorptive - porous adsorbent” system when air is enriched with oxygen by the method of short-cycle heatless adsorption, a new method has been implemented for determining the coefficients of mass transfer and mass conductivity of processes in systems with a solid phase from kinetic curves. It has been experimentally proved that during the adsorption separation of atmospheric air, the rate of cyclic “adsorption - desorption” processes can be limited by both internal and external diffusion resistance. The mass conductivity coefficients are determined depending on the mass content of the distributed adsorptive (O2, N2) by a method that does not require the implementation of the intradiffusion kinetic regime. The analysis of the kinetics of the process of air enrichment with oxygen is carried out; the coefficients of mass transfer and mass conductivity, which can be used in kinetic calculations and numerical study of the properties and modes of the cyclic adsorption process of atmospheric air separation and oxygen concentration, are determined.


Sign in / Sign up

Export Citation Format

Share Document