scholarly journals Effect of Isotherm Shape on Mass Transfer in an Adsorbent Particle; An Isothermal Adsorption Process

2011 ◽  
Vol 3 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Zeynep Elvan Yildirim
BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3575-3595
Author(s):  
Wanting Li ◽  
Ruifeng Shan ◽  
Yuna Fan ◽  
Xiaoyin Sun

Desethyl-atrazine (DEA) is a metabolite of atrazine that exerts a considerable influence on the environment. In this study, tall fescue biochar was prepared by pyrolysis at 500 °C, and batch experiments were conducted to explore its effect on the adsorption behavior of DEA in red soil, brown soil, and black soil. The addition of biochar increased the equilibrium amount of DEA adsorption for the three soil types. A pseudo-second-order kinetic model most closely fit the DEA adsorption kinetics of the three soils with and without biochar, with a determination coefficient (R2) of 0.962 to 0.999. The isothermal DEA adsorption process of soils with and without biochar was optimally described by the Freundlich and Langmuir isothermal adsorption models with R2 values of 0.98 and above. The DEA adsorption process in the pristine soil involved an exothermic reaction, which became an endothermic reaction after the addition of biochar. Partitioning was dominant throughout the entire DEA adsorption process of the three pristine soils. Conversely, in soils with biochar, surface adsorption represented a greater contribution toward DEA adsorption under conditions of low equilibrium concentration. The overall results revealed that the tall fescue biochar was an effective adsorbent for DEA polluted soil.


RSC Advances ◽  
2015 ◽  
Vol 5 (28) ◽  
pp. 22080-22090 ◽  
Author(s):  
Haoyu Shen ◽  
Zhejun Wang ◽  
Ameng Zhou ◽  
Junliang Chen ◽  
Meiqin Hu ◽  
...  

Tetraethylenepentamine-functionalized core–shell structured nanomagnetic Fe3O4 polymers (TEPA-Fe3O4-NMPs) with different amounts of magnetic core were synthesized and fully characterized. The magnetic core might favor mass transfer accelerating the adsorption process.


2019 ◽  
Vol 79 (4) ◽  
pp. 676-687 ◽  
Author(s):  
Zou Junyu ◽  
Song Zefeng ◽  
Yang Yuesuo

Abstract Preparation of sludge-derived mesoporous carbon materials (SMCs) through pyrolysis of excess activated sludge from urban municipal sewage plants is an effective means of reducing pollution and utilizing a waste resource. This paper presented a method of SMC preparation in which calcium oxide (CaO), polyacrylamide (PAM), and chitosan (CAS) flocculating agents were used as pore-forming additives. Physical and chemical characterizations of the prepared SMCs were conducted by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The prepared SMCs were used to adsorb a tetracycline (TC) antibiotic pollutant. The influences of pH, adsorption time, temperature, and pollutant concentration on TC adsorption capacity were determined. The experiments demonstrated that weakly acidic conditions were conducive to TC adsorption, which mainly occurs via electrostatic and π-π interactions. The TC adsorption process by SMCs conformed better to the pseudo-second-order models, indicating that chemical adsorption was the dominant adsorption process. The isothermal adsorption of TC by the SMCs conformed to the Freundlich model. This implied that TC easily adhered onto the SMC surfaces via multilayer homogeneous adsorption. Thermodynamic studies revealed that the adsorption of TC onto SMCs was spontaneous and endothermic.


2019 ◽  
Vol 68 (7) ◽  
pp. 495-508
Author(s):  
Zhongmin Li ◽  
Wanwan Wu ◽  
Wenyan Jiang ◽  
Guangtao Wei ◽  
Yunshang Li ◽  
...  

Abstract The adsorption of Ni(II) by a thermo-sensitive adsorbent of methylcellulose/calcium alginate beads (CAMCBs) was studied using batch adsorption tests to determine the adsorption process and properties, the effects of adsorbent dosage, initial concentration, adsorption time and temperature. The adsorption process was further investigated using kinetics, isotherms and thermodynamic methods. The kinetics and isotherms studies showed the adsorption of Ni(II) on CAMCBs was fitted by the pseudo-second-order kinetic model and Langmuir isothermal adsorption model, respectively. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic at lower temperature, and the entropy of the adsorption process was negative. In the study of regeneration, it was confirmed that under the temperature of 60 °C, the desorption agent of CaCl2 with concentration of 3 g·L−1 was more conducive to the desorption of Ni(II) from CAMCBs. Both adsorption capacity and mechanical strength of the used CAMCBs could be basically recovered to the level of fresh CAMCBs after desorption. The prepared CAMCBs had a good property of adsorption of Ni(II) and an excellent regeneration performance.


2013 ◽  
Vol 826 ◽  
pp. 163-166
Author(s):  
Guang Jun Ren ◽  
Xiao Peng Wan

An adsorbent was synthesized from modified furfural residue. The properties, kinetics and thermodynamics of alizarin red from water adsorption process on modified furfural residue were studied. The adsorption isotherm indicat that the relationship between adsorbing capacity (qe) and equilibrium mass concentration (Ce) is in accordanced with the isothermal adsorption equations of Langmuir. sorption process of modified furfural residue for alizarin red was decalescence reactionphysical adsorption. alizarin red as an adsorptive material was an effectual method. alizarin red as an adsorptive material was an effectual method. The exploitation and utilization of this furfural residue must bring obvious economic and social benefit to us


2012 ◽  
Vol 65 (5) ◽  
pp. 802-807 ◽  
Author(s):  
Wenjian Shi ◽  
Shuwei Chen ◽  
Fei Chang ◽  
Yue Han ◽  
Yuanzhang Zhang

Chitosan-β-cyclodextrin (CTS-CD) prepared through a crosslinking reaction between chitosan and β-cyclodextrin was employed to adsorb the three following sulfo-group-containing aromatics: disodium 2-naphthol-3,6-disulfonate (R salt), 2-naphthalene sulfonic acid (NSA), and sodium dodecylbenzene sulfonate (SDBS). At 318 K, the saturated adsorption capacity of CTS-CD for R salt, NSA, and SDBS was 431, 416, and 376 mg/g, respectively. The experimental data fitted the second-order model well and the rate constant of the adsorption increased with the temperature increment. The values of apparent activation energy for R salt, NSA, and SDBS were calculated as 33.2, 34.2, and 16.8 kJ/mol respectively. The isothermal adsorption was found following the Langmuir adsorption equation. The negative values of ΔG and the positive values of ΔH indicated that the adsorption process was spontaneous and exothermic.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xinrui Feng ◽  
Shaoshuai Sun ◽  
Ge Cheng ◽  
Lei Shi ◽  
Xiangshan Yang ◽  
...  

The magnetic adsorption material of polyaniline (PANI) with amino functional group combined with CuFe2O4 (CuFe2O4/PANI nanocomposite) has been described in this work. It has been characterized by TEM, XRD, XPS, BET, FTIR, and VSM, respectively. Significantly, it exhibits extremely high maximum adsorption capacity (322.6 mg/g) for removal of uranyl ions from wastewater at a pH of 4. The adsorption process is consistent with the quasisecond-order kinetic equation, and the isotherm and kinetic data are accurately described by the Langmuir isothermal adsorption model. Furthermore, the magnetic CuFe2O4/PANI displays stable adsorption performance for uranyl ions after five cycles of recovery in acid medium, which indicates it possesses good recovery due to its magnetism and excellent regeneration ability for reusability.


Sign in / Sign up

Export Citation Format

Share Document