The Features of the Hydrological Regime of the Lake-River Systems of the Byrranga Mountains (by the Example of the Levinson-Lessing Lake)

Author(s):  
V. P. Zimichev ◽  
D. Yu. Bolshyanov ◽  
V. G. Mesheryakov ◽  
D. Gintz
2021 ◽  
Author(s):  
Maria Camila Fernandez Berbeo ◽  
Nicolas Cortes Torres ◽  
Karen Ortega Tenjo ◽  
Martin Perez Pedraza ◽  
Laura Laverde Mesa ◽  
...  

<p>In Colombia around 70% of the electricity generation is from hydropower. It is documented that their infrastructure and operation rules affect the natural regime of flows and sediments with several impacts on aquatic ecosystem functioning mainly on the Magdalena-Cauca river basin, where most of the projects are located. Also, social conflicts have been documented downstream hydropower projects due to water use incompatibilities. Considering that Colombia has a great potential to expand hydropower generation as well as there is a growing demand from other water users, it is necessary to attend the ecological requirements of aquatic ecosystems and to improve the water management in order to avoid irreversible environmental impacts and governance problems.</p><p>In 2018, the Colombian Ministry of Environmental and Sustainable Development (MADS) developed a methodology to consider environmental flows both in the water management decisions and in the environmental impact assessment of new projects with impacts on hydrologic regimen. The opportunity to carry out a validation of its premises aims to research its effectiveness in terms of reduction in hydrologic alterations when environmental flow allocation is decided. </p><p>That is why we have developed a computer model (HeCCA 1.0) which contains the most important methods contemplated in the methodology proposed by MADS. Thus, using river discharge data of 15 different river systems located throughout the entire country, the methodology mentioned has been tested in basins with low anthropic alteration of the hydrological regime. In this test, we cover a range of drainage areas, from 180 to 73000 km<sup>2</sup>, located between 25 and 2993 meters above sea level, and different climatic and geomorphological characteristics. </p><p>The following results have been obtained using the HeCCA tool. For the 15 river systems, the statistical quartiles Q1, Q2 and Q3 for the percentage of use are monthly correspond to 24%, 47% and 100% respectively. The systems belong to different seasonal behaviors depending on the geographical location; nine of them count on a monomodal regimen, which average percentage of use is 61%±8, and the highest percentages of use (located in the Pacific basin) are not found during the wettest months, (77%±29); four of the watersheds are in the Orinoco basin, providing use of water between 61% and 67%. Six systems have bimodal regimen, whose average percentage of use is 49%±32, the two lowest percentages of use (14% and 19%) are found in the biggest bimodal watersheds, with sizes over 1700km<sup>2</sup>, which also have the highest average yields. The highest percentage of use found during the wettest months of the year is 99%, corresponding to the system located at one of the lowest points of the Caribbean basin.  </p><p>Thus, the percentage of available water depends on the watershed size, if it is related to the runoff seasonality along the year in the different catchment areas of the country. This approach provides stakeholders a clear overview of the water availability and management through a useful tool which improves the integral water management for hydrological systems.</p>


Author(s):  
Gražina ŽIBIENĖ ◽  
Alvydas ŽIBAS ◽  
Goda BLAŽAITYTĖ

The construction of dams in rivers negatively affects ecosystems because dams violate the continuity of rivers, transform the biological and physical structure of the river channels, and the most importantly – alter the hydrological regime. The impact on the hydrology of the river can occur through reducing or increasing flows, altering seasonality of flows, changing the frequency, duration and timing of flow events, etc. In order to determine the extent of the mentioned changes, The Indicators of Hydrologic Alteration (IHA) software was used in this paper. The results showed that after the construction of Angiriai dam, such changes occurred in IHA Parameters group as: the water conditions of April month decreased by 31 %; 1-day, 3-days, 7-days and 30-days maximum flow decreased; the date of minimum flow occurred 21 days later; duration of high and low pulses and the frequency of low pulses decreased, but the frequency of high pulses increased, etc. The analysis of the Environmental Flow Components showed, that the essential differences were recorded in groups of the small and large floods, when, after the establishment of the Šušvė Reservoir, the large floods no longer took place and the probability of frequency of the small floods didn’t exceed 1 time per year.


2019 ◽  
Vol 12 (3) ◽  
pp. 133-166 ◽  
Author(s):  
Alexander Gradel ◽  
Gerelbaatar Sukhbaatar ◽  
Daniel Karthe ◽  
Hoduck Kang

The natural conditions, climate change and socio-economic challenges related to the transformation from a socialistic society towards a market-driven system make the implementation of sustainable land management practices in Mongolia especially complicated. Forests play an important role in land management. In addition to providing resources and ecosystem functions, Mongolian forests protect against land degradation.We conducted a literature review of the status of forest management in Mongolia and lessons learned, with special consideration to halting deforestation and degradation. We grouped our review into seven challenges relevant to developing regionally adapted forest management systems that both safeguard forest health and consider socio-economic needs. In our review, we found that current forest management in Mongolia is not always sustainable, and that some practices lack scientific grounding. An overwhelming number of sources noticed a decrease in forest area and quality during the last decades, although afforestation initiatives are reported to have increased. We found that they have had, with few exceptions, only limited success. During our review, however, we found a number of case studies that presented or proposed promising approaches to (re-)establishing and managing forests. These studies are further supported by a body of literature that examines how forest administration, and local participation can be modified to better support sustainable forestry. Based on our review, we conclude that it is necessary to integrate capacity development and forest research into holistic initiatives. A special focus should be given to the linkages between vegetation cover and the hydrological regime.


Author(s):  
Saule Zhangirovna Asylbekova ◽  
Kuanysh Baibulatovich Isbekov ◽  
Evgeniy Vyacheslavovich Kulikov

The hydrological regime of water reservoirs in different years has a decisive impact on the abundance of commercial fish stocks and the quality of ichthyocenoses. In this connection in 2015-2016 there was conducted a retrospective analysis and ranking of hydrological regime impact on these factors. The paper gives evaluation of catches and fish stocks under different scenarios of water availability in the main fishing ponds of the Republic of Kazakhstan that give about 80% of the annual fish catch of the country (except the Caspian Sea). There were analyzed 2000 factors of hydrological regime (water level, annual discharge) and 1845 factors of fishing stocks (catches, abundance, fish biomass). The paper determines the critical characteristics of water availability for fish stocks. There have been proposed a number of administrative decisions and actions in case if water content would approach to the critical level. Among them: limitation of fish catches in the following year; widening zones restricted for fishing; intensification of safety measures of the fish young in residual ponds during arid periods; introduction of catch standards for a unit of fishing effort in low-water years, high-water years and years with normal water level in rivers.


2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


2019 ◽  
Vol 12 (9-10) ◽  
pp. 38-48
Author(s):  
V. I. Batuev ◽  
I. L. Kalyuzhny

The development of the European North of Russia, where flat and high-hummocky bog complexes are spread, requires information on the processes of formation of their hydrological regime and freezing of this territory. For the first time, based on observational data, for the period from 1993 to 2013, characteristics of the hydrological regime and freezing of hummocky bogs in Northern European Russia are presented, the case study of the Lovozerskoye bog. The observations were carried out in accordance with the unified methods, approved for the specialized network of Roshydromet bog stations. The regularities of the formation of the hydrological regime of hummocky bogs have been revealed: bog water level drops dramatically from the beginning of freezing to the end of March, rises during snow melt period, slightly drops in summer and rises in autumn. The main feature of hummocky bogs is permafrost, which determines their specific structure. It has been discovered that gravitation snowmelt and liquid precipitation waters relatively quickly run down the hummocks over the frozen layer into hollows between them. Levels of bog waters on the hummocks are absent for a longer period of time. In spring, the amplitude of water level rise in swamplands is on average 60–80 cm. Air temperature and insulation properties of snow are the main factors that influence the bog freezing. Hummocks freeze out as deep as 63–65 cm, which corresponds to the depth of their seasonal thawing in the warm period of the year, and adjoin the permafrost. The greatest depth of freezing of the swamplands is 82 – 87 cm, with an average of 68 cm. The frozen layer at swamplands thaws out from both its upper and bottom sides. The melting of the frozen layer at hummocks occurs only from the bog surface with an average intensity of 0,51 cm/day.


Author(s):  
Д.В. Гусев

Естественное возобновление является важным фактором формирования насаждений, особенно главных лесообразующих пород. Растительное сообщество становится жизнестойким при условии способности восстановить численность популяций заменой погибших экземпляров новыми. Было выяснено в каком количестве происходит естественное возобновление сосны на гарях по сравнению с граничащими участками, не пройденными пожарами, взятые в качестве контроля. Район исследований относится к южной подзоне тайги на территории Ленинградской области в Кировском и Лужском лесничествах. Объектом исследований стали сосновые насаждения, где работы проводились в летний период с 2013 по 2015 год. Всего подобрано 36 участков (включая контроль) размером не более 0,3 га. Учет подроста проводился на учетных площадках. Каждая учетная площадка закладывалась при помощи шеста длиной 178,5 см. Площадь круговых площадок составляла 10 м2, они расположены последовательно друг за другом с непосредственным примыканием. На каждой площадке проводили перечет подроста и делили его по высоте на три категории крупности: мелкий до 0,5 м, средний – 0,6–1,5 м и крупный – более 1,5 м. А также естественное возобновление на участках делили по густоте – на три категории: редкий – до 2 тыс., средней густоты – 2–8 тыс., густой – более 8 тыс. растений на 1 га; по распределению по площади – на три категории в зависимости от встречаемости. Анализ послепожарного возобновления в сосняках показал, что на пробных площадях наблюдается отличное возобновление подроста сосны и обилие на площади, все это связано с уничтожением лесной подстилки, увеличением минерализации почвы что, в конечном счете, положительно влияет на естественное лесовосстановление, о чем свидетельствует появление всходов, а также лучше становится гидрологический режим почвы. Благодаря этому происходит хорошее восстановление. Количество благонадежного подроста составляет от 3,5 до 11,9 тыс. шт./га и его достаточно для естественного восстановления ценопопуляции после пожара. Подтверждена зависимость количество самосева и толщины лесной подстилки. Прогретая после пожара, богатая минеральными веществами почва благоприятна для появления всходов и самосева древесных растений. Natural regeneration is an important factor in the formation of plantations, especially the main forest-forming species. Plant community becomes viable, provided the ability to recover populations, replacement of lost copies new. Find out how much happens in a natural pine regeneration in burned areas compared to adjacent areas not affected by fires, are taken as a control. The study area belongs to the subzone of southern taiga on the territory of Leningrad region, the Kirov and Luga districts. The object of research became pine plantations where the work was carried out in year period from 2013 to 2015. Just picked up 36 stations (including the control) no larger than 0.3 hectares. accounting for the undergrowth was conducted on index sites. Each user platform was laid with a pole length of 178.5 cm the area of the circular pads was 10 m2, they are located successively one after another with a direct connection. At each site conducted the translation of the undergrowth and it was divided in height into three categories of size: small up to 0.5 m, average 0.6 to 1.5 meters and large – more than 1.5 meters. And natural regeneration on plots divided by the density for three categories: rare – up to 2 thousand, medium density – 2 to 8 thousand, thick – more than 8 thousand plants per 1 ha; on the distribution of the area – into three categories depending on the occurrence. Analysis of post-fire regeneration in pine forests showed that the sample areas there is a great renewal of undergrowth of pine and the abundance on the square, all this is due to the destruction of forest litter, increasing salinity of the soil which, ultimately, has a positive effect on natural regeneration, as evidenced by the appearance of seedlings, as well as better hydrological regime of the soil. Which a good recovery. The number of reliable undergrowth is from 3.5 to 11.9 thousand PCs/ha, enough for natural regeneration of seedlings after the fire. Confirmed the dependence of the number of self-seeding and thickness of forest litter. After the fire-warmed, mineral-rich soil is favorable for emergence and self-seeding of woody plants.


Sign in / Sign up

Export Citation Format

Share Document