Experimental Studies on the Stability of the Dynamic Compression Implant (DCI)

Author(s):  
R. Schmoker
2021 ◽  
Vol 11 (8) ◽  
pp. 3444
Author(s):  
Sergey A. Lavrenko ◽  
Dmitriy I. Shishlyannikov

The authors focus on the process of potash ore production by a mechanized method. They show that currently there are no approved procedures for assessing the performance of heading-and-winning machines operating in the conditions of potash mines. This causes difficulties in determining the field of application of heading-and-winning machines, complicates the search for implicit technical solutions for the modernisation of existing models of mining units, prohibits real-time monitoring of the stability of stope-based technological processes and makes it difficult to assess the performance of the services concerning mining enterprises. The work represents an aggregate assessment of the performance of heading-and-winning machines for potash mines by determining complex indicators describing the technological and technical levels of organising the work in stopes. Such indicators are the coefficients of productivity and energy efficiency, respectively. Experimental studies have been carried out in the conditions of the potash mine of the Verkhnekamskoye potassium-magnesium salt deposit to assess the performance of the latest and most productive Ural-20R heading-and-winning machines manufactured in Russia. Using the above methodological approaches, this paper shows that the unsatisfactory technological performance of the studied machine is due to the low productivity of the mine district transport. The average productivity coefficient was 0.29. At the same time, high values of the energy efficiency coefficient show that the productivity of the machine is on par with design conditions.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
Yu Cao ◽  
Zhongzheng Fu ◽  
Mengshi Zhang ◽  
Jian Huang

This paper presents a tracking control method for pneumatic muscle actuators (PMAs). Considering that the PMA platform only feedbacks position, and the velocity and disturbances cannot be observed directly, we use the extended-state-observer (ESO) for simultaneously estimating the system states and disturbances by using measurable variables. Integrated with the ESO, a super twisting controller (STC) is design based on estimated states to realize the high-precision tracking. According to the Lyapunov theorem, the stability of the closed-loop system is ensured. Simulation and experimental studies are conducted, and the results show the convergence of the ESO and the effectiveness of the proposed method.


2021 ◽  
Vol 14 (3) ◽  
pp. 36-44
Author(s):  
S. Nikolenko ◽  
Svetlana Sazonova ◽  
Viktor Asminin

A study of the properties of dispersed-reinforced concrete and a study of the effect of dispersed reinforcement on the operation of structures was carried out, mainly with a static load of the same sign. Based on the results of experimental studies, a comparison was made of the work of dispersed-laminated structures under alternating dynamic action of high intensity with the work of reinforced concrete beam elements under similar influences. The results of experimental studies of cubes and prisms for static and dynamic compression are also presented. The results of experimental studies allow us to conclude that there is a significant effect of dispersed reinforcement on the operation of structures under the investigated influences and the feasibility of combined reinforcement of structures. The use of dispersed reinforcement in structures will increase the resistance of structures to such influences.


1994 ◽  
Vol 116 (3) ◽  
pp. 419-428 ◽  
Author(s):  
J. E. Colgate

This paper presents both theoretical and experimental studies of the stability of dynamic interaction between a feedback controlled manipulator and a passive environment. Necessary and sufficient conditions for “coupled stability”—the stability of a linear, time-invariant n-port (e.g., a robot, linearized about an operating point) coupled to a passive, but otherwise arbitrary, environment—are presented. The problem of assessing coupled stability for a physical system (continuous time) with a discrete time controller is then addressed. It is demonstrated that such a system may exhibit the coupled stability property; however, analytical, or even inexpensive numerical conditions are difficult to obtain. Therefore, an approximate condition, based on easily computed multivariable Nyquist plots, is developed. This condition is used to analyze two controllers implemented on a two-link, direct drive robot. An impedance controller demonstrates that a feedback controlled manipulator may satisfy the coupled stability property. A LQG/LTR controller illustrates specific consequences of failure to meet the coupled stability criterion; it also illustrates how coupled instability may arise in the absence of force feedback. Two experimental procedures—measurement of endpoint admittance and interaction with springs and masses—are introduced and used to evaluate the above controllers. Theoretical and experimental results are compared.


2021 ◽  
Vol 58 (4) ◽  
pp. 55-68
Author(s):  
F. Capligins ◽  
A. Litvinenko ◽  
A. Aboltins ◽  
E. Austrums ◽  
A. Rusins ◽  
...  

Abstract The paper presents a study of the chaotic jerk circuit (CJC) employment capabilities for digital communications. The concept of coherent chaos shift keying (CSK) communication system with controlled error feedback chaotic synchronization is proposed for a specific CJC in two modifications. The stability of chaotic synchronization between the two CJCs was evaluated in terms of voltage drop at the input of the slave circuit and the impact of channel noise using simulations and experimental studies.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben-Jaber

The development of the manufacturing-based industries is principally due to the improvement of various machining operations. Experimental studies are important in researches, and their results are also considered useful by the manufacturing industries with their aim to increase quality and productivity. Turning is one of the principal machining processes, and it has been studied since the 20th century in order to prevent machining problems. Chatter or self-excited vibrations represent an important problem and generate the most negative effects on the machined workpiece. To study this cutting process problem, various models were developed to predict stable and unstable cutting conditions. Stability analysis using lobes diagrams became useful to classify stable and unstable conditions. The purpose of this study is to analyze a turning process stability using an analytical model, with three degrees of freedoms, supported and validated with experimental tests results during roughing operations conducted on AU4G1 thin-walled tubular workpieces. The effects of the tubular workpiece thickness, the feed rate and the tool rake angle on the machining process stability will be presented. In addition, the effect of an additional structural damping, mounted inside the tubular workpiece, on the machining process stability will be also studied. It is found that the machining stability process is affected by the tubular workpiece thickness, the feed rate and the tool rake angle. The additional structural damping increases the stability of the machining process and reduces considerably the workpiece vibrations amplitudes. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces. The influence of this behavior on the stability of the machining process is assumed to be preponderant.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 830
Author(s):  
Michael Ortner ◽  
Neosha Navaei ◽  
Martin Lenzhofer

Planar fluxgate structures have been the focus of multiple experimental studies. However, theoretical treatises are still limited to the classical models that describe 3D structures. In this paper we derive an effective fluxgate equation for planar systems, dealing with strong stray fields and direct coupling, and show the stability and applicability of the Vacquier implementation. To support the theoretical model, FEM simulations are performed that also provide means of layouting planar fluxgates by pure magnetostatic simulation.


2019 ◽  
Vol 97 ◽  
pp. 01039
Author(s):  
Pavel Gudkov ◽  
Pavel Kagan ◽  
Anton Pilipenko ◽  
E Yu Zhukova ◽  
E A Zinovieva ◽  
...  

The article discusses the possibility of using the criteria of energy saving, cost and comfort as an estimate criterion in the analysis of information modeling technologies for low-rise buildings at the stages of design, implementation and operation. The insulation systems of low-rise buildings, including frame type, are considered as an object of study. Different types of insulation systems of frame buildings are considered and, as a result, the expediency of using rolled polyethylene foam as an insulating material is established. Its use allows to form a seamless insulating sheath with minimization of heat transfer bridges, as well as to eliminate the use of additional wind-proof and vapor-insulating membranes. The regularities of the influence of operating factors on the thermal resistance of the insulating shell are established. The data obtained as a result of the implementation of experimental studies allow us to state that low water absorption and low vapor permeability of the insulating layer exclude the possibility of its wetting and degradation of heat-shielding parameters. The stability of the properties of the insulation sheath and the construction of the walls as a whole is ensured during the entire period of operation.


Sign in / Sign up

Export Citation Format

Share Document