Therapeutic Approaches for Colon Cancer Based on Transcriptional Regulation of Specific Growth Factors

1993 ◽  
pp. 51-69
Author(s):  
M. G. Brattain ◽  
K. M. Mulder
1999 ◽  
Vol 82 (S 01) ◽  
pp. 32-37 ◽  
Author(s):  
Karlheinz Peter ◽  
Wolfgang Kübler ◽  
Johannes Ruef ◽  
Thomas K. Nordt ◽  
Marschall S. Runge ◽  
...  

SummaryThe initiating event of atherogenesis is thought to be an injury to the vessel wall resulting in endothelial dysfunction. This is followed by key features of atherosclerotic plaque formation such as inflammatory responses, cell proliferation and remodeling of the vasculature, finally leading to vascular lesion formation, plaque rupture, thrombosis and tissue infarction. A causative relationship exists between these events and oxidative stress in the vessel wall. Besides leukocytes, vascular cells are a potent source of oxygen-derived free radicals. Oxidants exert mitogenic effects that are partially mediated through generation of growth factors. Mitogens, on the other hand, are potent stimulators of oxidant generation, indicating a putative self-perpetuating mechanism of atherogenesis. Oxidants influence the balance of the coagulation system towards platelet aggregation and thrombus formation. Therapeutic approaches by means of antioxidants are promising in both experimental and clinical designs. However, additional clinical trials are necessary to assess the role of antioxidants in cardiovascular disease.


2021 ◽  
pp. 232020682110107
Author(s):  
Sandeep S. Katti ◽  
Kishore Bhat ◽  
Chetana Bogar

Aim: The aim of the current study was to isolate stem cells from various dental sources such as dental pulp, periodontal ligament (PDL), and apical papilla, and to characterize stem cells by staining for the presence/absence of specific surface markers and also to differentiate stem cells into osteogenic, chondrogenic, and adipogenic cell lineages by exposing them to specific growth factors under the ideal conditions. Materials and Methods: A total of 117 samples were included in the study, consisting of 30 pulp, 50 gingival, 35 PDL, and 2 apical papilla samples. The pulp was extirpated and transported to the Central Research Laboratory. Gingival connective tissue was collected from the participants undergoing any crown lengthening procedure or any gingivectomy procedure from the Department of Periodontology. A similar procedure was also followed for apical papilla and PDL. Isolation was done followed by the identification of the cells by immunocytochemistry using different markers. Once the identity of cells was confirmed, these cells were treated with different culture media to attain 70% to 100% confluency. Then the medium was replaced with a conditioning medium containing specific growth factors for differentiation into osteogenic, chondrogenic, and adipogenic cell lineages. Result: In our study, the number of samples collected and processed was 117. The isolation rate of stem cells from the above-collected samples was 70%. Statistical analysis—no statistical analysis was done as there was no variability expected. Conclusion: Our study showed that stem cells could be isolated, differentiated, and characterized from different dental sources.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 395 ◽  
Author(s):  
Ylenia Jabalera ◽  
Beatriz Garcia-Pinel ◽  
Raul Ortiz ◽  
Guillermo Iglesias ◽  
Laura Cabeza ◽  
...  

Conventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa–BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC. Electrostatic interactions between Oxa and BMNPs trigger the formation of the nanoassembly and keep it stable at physiological pH. When the BMNPs become neutral at acidic pH values, the Oxa is released, and such a release is greatly potentiated by hyperthermia. The coupling of the drug with the BMNPs improves its toxicity to even higher levels than the soluble drug, probably because of the fast internalization of the nanoassembly by tumor cells through endocytosis. In addition, the BMNPs are cytocompatible and non-hemolytic, providing positive feedback as a proof of concept for the nanoassembly. Our study clearly demonstrates the applicability of Oxa–BMNP in colon cancer and offers a promising nanoassembly for targeted chemotherapy against this type of tumor.


2001 ◽  
Vol 10 (5) ◽  
pp. 173-178 ◽  
Author(s):  
L. Krishnamoorthy ◽  
H.L. Morris ◽  
K.G. Harding

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lu Cao ◽  
Partha Mitra ◽  
Thomas J. Gonda

AbstractAcute leukaemias express high levels of MYB which are required for the initiation and maintenance of the disease. Inhibition of MYB expression or activity has been shown to suppress MLL-fusion oncoprotein-induced acute myeloid leukaemias (AML), which are among the most aggressive forms of AML, and indeed MYB transcription has been reported to be regulated by the MLL-AF9 oncoprotein. This highlights the importance of understanding the mechanism of MYB transcriptional regulation in these leukaemias. Here we have demonstrated that the MLL-AF9 fusion protein regulates MYB transcription directly at the promoter region, in part by recruiting the transcriptional regulator kinase CDK9, and CDK9 inhibition effectively suppresses MYB expression as well as cell proliferation. However, MYB regulation by MLL-AF9 does not require H3K79 methylation mediated by the methyltransferase DOT1L, which has also been shown to be a key mediator of MLL-AF9 leukemogenicity. The identification of specific, essential and druggable transcriptional regulators may enable effective targeting of MYB expression, which in turn could potentially lead to new therapeutic approaches for acute myeloid leukaemia with MLL-AF9.


1996 ◽  
Vol 29 (5) ◽  
pp. 243-257 ◽  
Author(s):  
Y.-F. Cui ◽  
B. I. Lord ◽  
L. B. Woolford ◽  
N. G. Testa

Sign in / Sign up

Export Citation Format

Share Document