Refurbishing Existing Building Stock

Author(s):  
Vladimir Jovanović
Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Michael M. Santos ◽  
João C. G. Lanzinha ◽  
Ana Vaz Ferreira

Having in mind the objectives of the United Nations Development Agenda 2030, which refers to the sustainable principles of a circular economy, it is urgent to improve the performance of the built environment. The existing buildings must be preserved and improved in order to reduce their environmental impact, in line with the need to revert climate change and reduce the occurrence of natural disasters. This work had as its main goal to identify and define a methodology for promoting the rehabilitation of buildings in the Ponte Gêa neighborhood, in the city of Beira, Mozambique, with an emphasis on energy efficiency, water efficiency, and construction and demolition waste management. The proposed methodology aims to create a decision support method for creating strategic measures to be implemented by considering the three specific domains—energy, water, and waste. This model allows for analyzing the expected improvement according to the action to be performed, exploring both individual and community solutions. It encompasses systems of standard supply that can reveal greater efficiency and profitability. Thus, the in-depth knowledge of the characteristics of urban space and buildings allows for establishing guidelines for the renovation process of the neighborhood.


2021 ◽  
Vol 11 (4) ◽  
pp. 1423
Author(s):  
José Manuel Salmerón Lissen ◽  
Cristina Isabel Jareño Escudero ◽  
Francisco José Sánchez de la Flor ◽  
Miriam Navarro Escudero ◽  
Theoni Karlessi ◽  
...  

The 2030 climate and energy framework includes EU-wide targets and policy objectives for the period 2021–2030 of (1) at least 55% cuts in greenhouse gas emissions (from 1990 levels); (2) at least 32% share for renewable energy; and (3) at least 32.5% improvement in energy efficiency. In this context, the methodology of the cost-optimal level from the life-cycle cost approach has been applied to calculate the cost of renovating the existing building stock in Europe. The aim of this research is to analyze a pilot building using the cost-optimal methodology to determine the renovation measures that lead to the lowest life-cycle cost during the estimated economic life of the building. The case under study is an apartment building located in a mild Mediterranean climate (Castellon, SP). A package of 12 optimal solutions has been obtained to show the importance of the choice of the elements and systems for renovating building envelopes and how energy and economic aspects influence this choice. Simulations have shown that these packages of optimal solutions (different configurations for the building envelope, thermal bridges, airtightness and ventilation, and domestic hot water production systems) can provide savings in the primary energy consumption of up to 60%.


2021 ◽  
Vol 13 (11) ◽  
pp. 6018
Author(s):  
Theo Lynn ◽  
Pierangelo Rosati ◽  
Antonia Egli ◽  
Stelios Krinidis ◽  
Komninos Angelakoglou ◽  
...  

The building stock accounts for a significant portion of worldwide energy consumption and greenhouse gas emissions. While the majority of the existing building stock has poor energy performance, deep renovation efforts are stymied by a wide range of human, technological, organisational and external environment factors across the value chain. A key challenge is integrating appropriate human resources, materials, fabrication, information and automation systems and knowledge management in a proper manner to achieve the required outcomes and meet the relevant regulatory standards, while satisfying a wide range of stakeholders with differing, often conflicting, motivations. RINNO is a Horizon 2020 project that aims to deliver a set of processes that, when working together, provide a system, repository, marketplace and enabling workflow process for managing deep renovation projects from inception to implementation. This paper presents a roadmap for an open renovation platform for managing and delivering deep renovation projects for residential buildings based on seven design principles. We illustrate a preliminary stepwise framework for applying the platform across the full-lifecycle of a deep renovation project. Based on this work, RINNO will develop a new open renovation software platform that will be implemented and evaluated at four pilot sites with varying construction, regulatory, market and climate contexts.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2472
Author(s):  
Karel Struhala ◽  
Milan Ostrý

Contemporary research stresses the need to reduce mankind’s environmental impacts and achieve sustainability. One of the keys to this is the construction sector. New buildings have to comply with strict limits regarding resource consumption (energy, water use, etc.). However, they make up only a fraction of the existing building stock. Renovations of existing buildings are therefore essential for the reduction of the environmental impacts in the construction sector. This paper illustrates the situation using a case study of a rural terraced house in a village near Brno, Czech Republic. It compares the life-cycle assessment (LCA) of the original house and its proposed renovation as well as demolition followed by new construction. The LCA covers both the initial embodied environmental impacts (EEIs) and the 60-year operation of the house with several variants of energy sources. The results show that the proposed renovation would reduce overall environmental impacts (OEIs) of the house by up to 90% and the demolition and new construction by up to 93% depending on the selected energy sources. As such, the results confirm the importance of renovations and the installation of environmentally-friendly energy sources for achieving sustainability in the construction sector. They also show the desirability of the replacement of inefficient old buildings by new construction in specific cases.


Author(s):  
Annarita Ferrante ◽  
Fabrizio Ungaro ◽  
Giovanni Semprini ◽  
Lorna Dragonetti ◽  
Elettra Agliardi ◽  
...  

<p>and international projects</p><p>various EU H2020 projects</p><p>Though housing is one of the most energy consumer sectors, it is currently extremely underestimated, because of a clear investment gap due to economic, social and legislative barriers. The EU project ABRACADABRA (Assistant Building to Retrofit, Adopt, Cure And Develop the Actual Buildings up to zeRo energy, Activating a market for deep renovation) is based on the idea that the real estate value increase given by the appropriate densification strategy in urban environments could be an opportunity to activate a market for deep energy renovation. To prove the effectiveness of the strategy more than 70 case studies throughout the EU cities have been assessed by means of a cost-effective analysis. Basing on the parametric variation of the different values involved (cost of construction, energy, etc.) the benefit of this strategy has been proved in the majority of the different building types and contexts.</p><p>More interestingly, the ABRA strategy has been simulated and tested outside Europe in order to verify its scalability and the possibility of considering other non-energy related benefits in the renovation of the existing building stock. A specific study on the NYC urban context has been conducted to effectively adapt the strategy and combine the global drivers of energy consumption reduction and CO<span>2</span> emission reduction with the local need of combating flood emergency and related flood-proofing measures.</p><p>The results reached by this work demonstrate how the energy retrofit trough add-ons reduces significantly the payback times of the investments, preserve soil consumption, while providing a extraordinary opportunity to enhance urban resiliency by challenging the local emergencies.</p>


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1230 ◽  
Author(s):  
Chris Zevenbergen ◽  
Dafang Fu ◽  
Assela Pathirana

At present, the Sponge City Concept (SCC) is gaining ground, Sponge Cities technologies are becoming more and more accepted by Chinese city governments, and the first best practices are being shared. However, there are still many challenges ahead which hamper effective implementation and upscaling. This paper presents an overview of some opportunities and constraints for the take up of this approach and has drawn upon international experiences. In China at the national level, the State Council has set a progressive target for the SCC initiative to be achieved in 2030. This target seems to be ambitious as the time needed for integrative planning and design and implementation is much longer than traditional sectoral approaches often omitting to address social well-being, the (local) economy, and ecosystem health. This particularly holds true for the existing building stock. Transforming the existing building stock requires a long-term planning horizon, with urban restoration, regeneration, and modernization being key drivers for adapting the city to become a sponge city. A key challenge will be to align the sponge city initiative (SCI) projects with infrastructure and urban renovation portfolios. Moreover, substantial investment needs and a lack of reliable financing schemes and experience also provide a huge challenge for China. This calls for an integrative opportunistic strategy that creates enabling conditions for linking the SCI investment agenda with those from other sectors. These transformations cannot be made overnight: completing the transformation process will typically take a life time of one generation. The progress in sustainable urban water management is also impacted by innovations in technologies as well as in management strategies. These technological innovations create fertile ground for businesses to adapt state-of-the-art developments from around the world and contextualize them into fit-for-purpose products. China is well-placed to play a leading role in this process in the coming decade.


2014 ◽  
Vol 39 (2) ◽  
pp. 48-56
Author(s):  
Tadeo Baldiri Salcedo Rahola ◽  
Ad Straub ◽  
Angela Ruiz Lázaro ◽  
Yves Galiègue

The renovation of existing building stock is seen as one the most practical ways to achieve the high energy savings targets for the built environment defined by European authorities. In France, the Grenelle environmental legislation addresses the need to renovate the building stock and specifically stresses the key role of social housing organisations. In recent years, French procurement rules have been modified in order to allow social housing organisations to make use of integrated contracts such as Design-Build-Maintain. These contracts have a greater potential to deliver energy savings in renovation projects than do traditional project delivery methods, like Design-bid-Build. This is because they facilitate collaboration between the various actors and boost their commitment to the achievement of project goals. In order to evaluate the estimated potential of such contracts to achieve energy savings, two renovation projects (carried out by two French social housing organisations) were analysed from their inception until the end of construction work. The analysis is based on written tender documents, technical evaluation reports, observations of the negotiation phase (in one of the cases) and interviews with the main actors involved. Findings show that Design-Build-Maintain contracts do indeed offer substantial energy savings. Both projects achieved higher energy targets than those initially required. Furthermore, the energy results are guaranteed by the contractor, through a system of bonuses and penalties. Other results demonstrate that, compared to previous Design-bid-Build renovation projects, these projects were completed in less time (from project inception to completion of the work) and at virtually the same cost. There has also been a substantial improvement in cooperation between the actors involved.


Author(s):  
Ulgen Mert Tugsal ◽  
Beyza Taskin

Considering the fact that similar structural and construction deficiencies which are exposed during the recent destructive earthquake events are existing in many southern European, Middle Eastern and west Asian countries settling on highly seismic zones, designating the seismic adequacy of the existing building stock for providing structural safety is a significant necessitation in the mitigation of losses during the future seismic events. In most of these regions, a clear majority of the building stock has not been adequately designed or constructed in terms of the seismic regulations of the design codes, while some have even not benefitted from engineering services. Post-earthquake site observations demonstrate the insufficient capacities in these buildings depending on different structural and construction deficiencies. Within the scope of this research, it is aimed to investigate and compare the analytically calculated structural performances of a building ensemble consists of 3~5 story structures with known damage level by utilizing different procedures.


2020 ◽  
Vol 38 (9) ◽  
pp. 923-941
Author(s):  
Melanie Rašković ◽  
Arne M Ragossnig ◽  
Krzysztof Kondracki ◽  
Michaela Ragossnig-Angst

Waste from the construction sector poses huge challenges for sustainable waste management. This is not only due to the vast amount of waste produced in construction and demolition activities, but also due to pollutants potentially contained in these products. Subject to these conditions, waste management must ensure recovery of as many resources as possible, while making sure to keep material loops clean. This demanding task requires more knowledge about the existing building stock and an adaptation of current demolition processes. Innovative technologies, such as Building Information Modelling, or modern frameworks, such as Geographic Information Systems, offer a high potential to synoptically provide stock material information for future demolition activities for individual objects to be deconstructed as well as for whole cities as a basis for managing the anthropogenic stock and potential urban mining. Suitable methods of data collection allow for acquiring the desired input for the generation of building stock models enriched with demolition-related information. With the latter, selective deconstruction strategies as well as appropriate waste stream routing agendas can be planned and executed, thereby securing safety at work during the demolition process itself and a waste stream routing according to the waste hierarchy. This review article gives an overview of currently deployed building material assessment tools (data capture and visualisation), both a prerequisite for improved information on materials and geometry (and thereby mass/volume). In addition, this article describes workflows employable for the purpose of urban mining in end-of-life buildings, of which one holistic approach will be described in depth.


Sign in / Sign up

Export Citation Format

Share Document