Image of a Jacobi Field

Author(s):  
Yurij M. Berezansky ◽  
Artem D. Pulemyotov
Keyword(s):  
2018 ◽  
Vol 40 (5) ◽  
pp. 1194-1216
Author(s):  
CHRIS CONNELL ◽  
THANG NGUYEN ◽  
RALF SPATZIER

A Riemannian manifold $M$ has higher hyperbolic rank if every geodesic has a perpendicular Jacobi field making sectional curvature $-1$ with the geodesic. If, in addition, the sectional curvatures of $M$ lie in the interval $[-1,-\frac{1}{4}]$ and $M$ is closed, we show that $M$ is a locally symmetric space of rank one. This partially extends work by Constantine using completely different methods. It is also a partial counterpart to Hamenstädt’s hyperbolic rank rigidity result for sectional curvatures $\leq -1$, and complements well-known results on Euclidean and spherical rank rigidity.


1970 ◽  
Vol 43 (4) ◽  
pp. 521-528
Author(s):  
Khondokar M Ahmed

A new approach of finding a Jacobi field equation with the relation between curvature and geodesics of a Riemanian manifold M has been derived. Using this derivation we have made an attempt to find a standard form of this equation involving sectional curvature K and other related objects. Key words: Riemanign curvature, Sectional curvature, Jacobi equation, Jacobifield.    doi: 10.3329/bjsir.v43i4.2242 Bangladesh J. Sci. Ind. Res. 43(4), 521-528, 2008


1997 ◽  
Vol 40 (2) ◽  
pp. 293-308 ◽  
Author(s):  
Toshiaki Adachi

A scalar multiple of the Kähler form of a Kähler manifold is called a Kähler magnetic field. We are focused on trajectories of charged particles under this action. As a variation of trajectories we define a magnetic Jacobi field. In this paper we discuss a comparison theorem on magnetic Jacobi fields, which corresponds to the Rauch's comparison theorem.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Amalendu Ghosh

Abstract We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.


2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
Linyu Peng ◽  
Huafei Sun ◽  
Xiao Sun

We characterize the geometry of the Hamiltonian dynamics with a conformal metric. After investigating the Eisenhart metric, we study the corresponding conformal metric and obtain the geometric structure of the classical Hamiltonian dynamics. Furthermore, the equations for the conformal geodesics, for the Jacobi field along the geodesics, and the equations for a certain flow constrained in a family of conformal equivalent nondegenerate metrics are obtained. At last the conformal curvatures, the geodesic equations, the Jacobi equations, and the equations for the flow of the famous models, anNdegrees of freedom linear Hamiltonian system and the Hénon-Heiles model are given, and in a special case, numerical solutions of the conformal geodesics, the generalized momenta, and the Jacobi field along the geodesics of the Hénon-Heiles model are obtained. And the numerical results for the Hénon-Heiles model show us the instability of the associated geodesic spreads.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Sean Alan Ali ◽  
Carlo Cafaro ◽  
Steven Gassner ◽  
Adom Giffin

Motivated by the presence of deep connections among dynamical equations, experimental data, physical systems, and statistical modeling, we report on a series of findings uncovered by the authors and collaborators during the last decade within the framework of the so-called Information Geometric Approach to Chaos (IGAC). The IGAC is a theoretical modeling scheme that combines methods of information geometry with inductive inference techniques to furnish probabilistic descriptions of complex systems in presence of limited information. In addition to relying on curvature and Jacobi field computations, a suitable indicator of complexity within the IGAC framework is given by the so-called information geometric entropy (IGE). The IGE is an information geometric measure of complexity of geodesic paths on curved statistical manifolds underlying the entropic dynamics of systems specified in terms of probability distributions. In this manuscript, we discuss several illustrative examples wherein our modeling scheme is employed to infer macroscopic predictions when only partial knowledge of the microscopic nature of a given system is available. Finally, we include comments on the strengths and weaknesses of the current version of our proposed theoretical scheme in our concluding remarks.


Author(s):  
YURIJ M. BEREZANSKY

A direct proof of the assertion that the spectral measure of a Poisson field of self-adjoint commuting operators is a Poisson measure is presented. This proof gives a possibility to generalize such a fact to more general situations.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuma Hirakui ◽  
Takahiro Yajima

In this study, we geometrically analyze the relation between a point vortex system and deviation curvatures on the Jacobi field. First, eigenvalues of deviation curvatures are calculated from relative distances of point vortices in a three point vortex system. Afterward, based on the assumption of self-similarity, time evolutions of eigenvalues of deviation curvatures are shown. The self-similar motions of three point vortices are classified into two types, expansion and collapse, when the relative distances vary monotonously. Then, we find that the eigenvalues of self-similarity are proportional to the inverse fourth power of relative distances. The eigenvalues of the deviation curvatures monotonically convergent to zero for expansion, whereas they monotonically diverge for collapse, which indicates that the strengths of interactions between point vortices related to the time evolution of spatial geometric structure in terms of the deviation curvatures. In particular, for collapse, the collision point becomes a geometric singularity because the eigenvalues of the deviation curvature diverge. These results show that the self-similar motions of point vortices are classified by eigenvalues of the deviation curvature. Further, nonself-similar expansion is numerically analyzed. In this case, the eigenvalues of the deviation curvature are nonmonotonous but converge to zero, suggesting that the motion of the nonself-similar three point vortex system is also classified by eigenvalues of the deviation curvature.


2014 ◽  
Vol 37 ◽  
pp. 109-119 ◽  
Author(s):  
Dennis Gumaer ◽  
Frederick Wilhelm
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document