Quorum Sensing in Escherichia coli: Interkingdom, Inter- and Intraspecies Dialogues, and a Suicide-Inducing Peptide

Author(s):  
Bloom-Ackermann Zohar ◽  
Ilana Kolodkin-Gal
2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


2020 ◽  
Vol 8 (10) ◽  
pp. 1478 ◽  
Author(s):  
Dobroslava Bujňáková ◽  
Anna Čuvalová ◽  
Milan Čížek ◽  
Filip Humenik ◽  
Michel Salzet ◽  
...  

The present study investigated the in vitro antibacterial, antibiofilm and anti-Quorum Sensing (anti-QS) activities of canine bone marrow mesenchymal stem cell-conditioned media (cBM MSC CM) containing all secreted factors <30 K, using a disc diffusion test (DDT), spectrophotometric Crystal Violet Assay (SCVA) and Bioluminescence Assay (BA) with QS-reporter Escherichia coli JM109 pSB1142. The results show a sample-specific bacterial growth inhibition (zones varied between 7–30 mm), statistically significant modulation of biofilm-associated Staphylococcus aureus and Escherichia coli bioluminescence (0.391 ± 0.062 in the positive control to the lowest 0.150 ± 0.096 in the experimental group, cf. 11,714 ± 1362 to 7753 ± 700, given as average values of absorbance A550 ± SD versus average values of relative light units to growth RLU/A550 ± SD). The proteomic analysis performed in our previous experiment revealed the presence of several substances with documented antibacterial, antibiofilm and immunomodulatory properties (namely, apolipoprotein B and D; amyloid-β peptide; cathepsin B; protein S100-A4, galectin 3, CLEC3A, granulin, transferrin). This study highlights that cBM MSC CM may represent an important new approach to managing biofilm-associated and QS signal molecule-dependent bacterial infections. To the best of our knowledge, there is no previous documentation of canine BM MSC CM associated with in vitro antibiofilm and anti-QS activity.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 147 ◽  
Author(s):  
Marlon Cáceres ◽  
William Hidalgo ◽  
Elena Stashenko ◽  
Rodrigo Torres ◽  
Claudia Ortiz

Both the ability of bacteria to form biofilms and communicate through quorum sensing allows them to develop different survival or virulence traits that lead to increased bacterial resistance against conventional antibiotic therapy. Here, seventeen essential oils (EOs) were investigated for the antimicrobial, antibiofilm, and anti-quorum sensing activities on Escherichia. coli O157:H7, Escherichia coli O33, and Staphylococcus epidermidis ATCC 12228. All essential oils were isolated from plant material by using hydrodistillation and analyzed by GC-MS. The antimicrobial activity was performed by using the microdilution technique. Subinhibitory concentrations of each EO were assayed for biofilm inhibition in both bacterial strains. Quantification of violacein in Chromobacterium violaceum CV026 was performed for the anti-quorum sensing activity. The cytotoxicity activity of the EOs was evaluated on Vero cell line by using MTT method. Thymol-carvacrol-chemotype (I and II) oils from Lippia origanoides and Thymus vulgaris oil exhibited the higher antimicrobial activity with MIC values of 0.37–0.75 mg/mL. In addition, these EOs strongly inhibited the biofilm formation and violacein (QS) production in a concentration-dependent manner, highlighting thymol-carvacrol-chemotype (II) oil as the best candidate for further studies in antibiotic design and development against bacterial resistance.


2016 ◽  
Vol 10 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Jeesun Lim ◽  
Kang-Mu Lee ◽  
Chan Yong Park ◽  
Han Vit Kim ◽  
Younghoon Kim ◽  
...  

2002 ◽  
Vol 70 (6) ◽  
pp. 3085-3093 ◽  
Author(s):  
Vanessa Sperandio ◽  
Caiyi C. Li ◽  
James B. Kaper

ABSTRACT The locus of enterocyte effacement (LEE) is a chromosomal pathogenicity island that encodes the proteins involved in the formation of the attaching and effacing lesions by enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). The LEE comprises 41 open reading frames organized in five major operons, LEE1, LEE2, LEE3, tir (LEE5), and LEE4, which encode a type III secretion system, the intimin adhesin, the translocated intimin receptor (Tir), and other effector proteins. The first gene of LEE1 encodes the Ler regulator, which activates all the other genes within the LEE. We previously reported that the LEE genes were activated by quorum sensing through Ler (V. Sperandio, J. L. Mellies, W. Nguyen, S. Shin, and J. B. Kaper, Proc. Natl. Acad. Sci. USA 96:15196-15201, 1999). In this study we report that a putative regulator in the E. coli genome is itself activated by quorum sensing. This regulator is encoded by open reading frame b3243; belongs to the LysR family of regulators; is present in EHEC, EPEC, and E. coli K-12; and shares homology with the AphB and PtxR regulators of Vibrio cholerae and Pseudomonas aeruginosa, respectively. We confirmed the activation of b3243 by quorum sensing by using transcriptional fusions and renamed this regulator quorum-sensing E. coli regulator A (QseA). We observed that QseA activated transcription of ler and therefore of the other LEE genes. An EHEC qseA mutant had a striking reduction of type III secretion activity, which was complemented when qseA was provided in trans. Similar results were also observed with a qseA mutant of EPEC. The QseA regulator is part of the regulatory cascade that regulates EHEC and EPEC virulence genes by quorum sensing.


Sign in / Sign up

Export Citation Format

Share Document