Role of Plant Growth Regulators in Abiotic Stress Tolerance

Author(s):  
K. K. Upreti ◽  
Maryada Sharma
Author(s):  
Rafaqat Ali Gill ◽  
Sunny Ahmar ◽  
Basharat Ali ◽  
Muhammad Hamzah Saleem ◽  
Muhammad Umar Khan ◽  
...  

Membrane transporters (MTs) are mainly localized at the plasma membrane (PM), tonoplast and vacuolar membrane (VM) of cells in all plant organs. Their work is to maintain the cellular homeostasis by controlling ionic movements across PM channels from roots to upper plant parts, xylem loading and remobilization of sugar molecules from photosynthesis tissues in the leaf (source) to roots, stem and seeds (sink) via phloem loading. The plant’s whole source-to-sink relationship is regulated by multiple transporting proteins in a highly sophisticated manner and driven based on different stages of plant growth and development (PG&D), and environmental changes. The MTs play a pivotal role in PG&D in terms of increased plant height, branches/tiller numbers, enhanced numbers, length and filled panicles per plant, seed yield and grain quality. Dynamic climatic changes disturbed the ionic balance (salt, drought and heavy metals) and sugar supply (cold and heat stress). Due to poor selectivity, some of the MTs also uptake toxic elements in the roots that negatively impact on PG&D, later on also exported to upper parts and then deteriorate the grain quality. As an adaptive strategy, in response to salt and HMs plants activated PM and VM localized MTs that export toxic elements into vacuole, and also translocate in the root’s tips and shoot. However, in case of drought, cold and heat stresses, MTs increased the water and sugar supply to all organs. In this review, we mainly reviewed recent literature from Arabidopsis, halophytes, and major field crops such as rice, wheat, maize and oilseed rape to argue on the global role of MTs in PG&D and abiotic stress tolerance. We also discussed the gene expression level changes and genomic variations within a species as well as within a family in response to developmental and environmental cues.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


Sign in / Sign up

Export Citation Format

Share Document