scholarly journals ROLE OF PLANT GROWTH REGULATORS IN THE GROWTH AND DEVELOPMENT OF DIFFERENT PLANTS AGAINST BIOTIC AND ABIOTIC STRESS: A REVIEW

2021 ◽  
Vol 21 (Suppliment-1) ◽  
pp. 2190-2196
Author(s):  
Rakhi Chandoliya ◽  
MamtaPujari . ◽  
Dhriti Kapoor
2021 ◽  
Vol 13 (5) ◽  
pp. 2432
Author(s):  
Anna Makarova ◽  
Elena Nikulina ◽  
Tatiana Avdeenkova ◽  
Ksenia Pishaeva

Heavy metals are among the most widespread pollutants in soil. Phytoextraction technology is used to solve the problem of multi-metal-contaminated soil. The efficiency of this process can be increased by introducing various amendments. A soil amendment is any material added to a soil to improve its physical properties, such as water retention, permeability, water infiltration, drainage, aeration, and structure. Some chemical amendments for enhanced phytoextraction, such as amino polycarboxylates chelators, can be hazardous to the environment and perform poorly at pH > 8. The effect of the potassium salt of hydroxyethylidene diphosphonic acid (K2HEDP), plant growth regulators (PGRs), and iron chelate alone and in combination on the phytoextraction by Trifolium repens L. seedlings of Cd, Ni, and Cu was studied in this work. K2HEDP works in a wider pH range. The results of this study confirmed that amino polycarboxylate chelators, with the sodium salt of ethylene diamine tetraacetic acid (Na2EDTA) as an example, have a pronounced negative effect on the growth and development (organ mass) of Trifolium repens L. seedlings. K2HEDP, proposed by the authors instead of Na2EDTA, produced a pronounced positive effect on plant growth and development, which was further enhanced by the use of PGRs and with iron chelates. However, it should be noted that K2HEDP showed significantly lower efficiency in trials on the Trifolium repens L. seedlings. The highest was the efficiency of K2HEDP with PGRs and iron chelates for the phytoextraction of Cd.


Author(s):  
P. Kaur ◽  
D. Mal ◽  
A. Sheokand ◽  
Sh weta ◽  
L. Singh ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hammad Ishtiaq ◽  
Savita Bhardwaj ◽  
Aaliya Ashraf ◽  
Dhriti Kapoor

Plant growth regulators are significant chemical compounds which are synthesized inside the plant cells and play vital role in plant growth and development. Such compounds are usually active at very low concentrations. These plant growth regulators act as a signalling molecule, which influences the growth of plants. Throughout the previous year’s remarkable investigation have been done for understanding the synthesis of auxin and its effect on various physiological progressions. Auxin is a plant hormone that is involved in various physiological activities, including basic cellular processes such as cell enlargement, regulation of the cell cycle and distinction progress. Plants and several other microorganisms together produce auxin in order to carry out their cell cycle. The chemically synthesized auxins like NAA (naphthalene acetic acid) and IBA (Indole- butyric acid), also take part in various cellular processes. Against various types of biotic and abiotic stress conditions, these plant hormones significantly contribute in promoting acclimatization and adaptation in combination with other phytohormones. The present review highlights some of the important features of auxin role in regulation of plant growth either alone or in crosstalk with other plant hormones.


2020 ◽  
Vol 23 ◽  
pp. 03011
Author(s):  
Yuliya M. Andriyanova ◽  
Irina V. Sergeyeva ◽  
Nataliya N. Gusakova ◽  
Yuliya M. Mokhonko

Stress protectors (adaptogens) are among the most important factors that regulate growth processes at all stages of plant development. This article presents results of field studies of the effect of new synthetic plant growth regulators of stress protectors (adaptogens) on the elements of productivity and yield of spring oats of the Skakun variety. The obtained results during the research showed that all the studied derivatives of peredazinones are adaptogens and they contribute to an increased productivity and increased yield of spring oats. We studied the effect of pre-sowing treatment of seeds with new synthetic plant growth regulators of stress protectors on the quality indicators of cereal production of Skakun oats (protein, starch and amylolytic enzymes content in the cereal). Pre-sowing treatment of oat seeds increases the amount of protein in the cereal up to 15%, starch – up to 25%, amylase – up to 20%. We proved the ability of stress protectors to minimize the negative impact of heavy metals (lead, zinc) on agrophytocenoses, which will make it possible to obtain environmentally friendly cereal products when cultivating oats in anthropogenically polluted areas of the Saratov Oblast.


2015 ◽  
Vol 34 (4) ◽  
pp. 720-736 ◽  
Author(s):  
Adam Rajsz ◽  
Anna Warzybok ◽  
Magdalena Migocka

AbstractFull-size members of the ABCG (ATP-binding cassette, subfamily G) subfamily of ABC transporters have been found only in plants and fungi. The plant genes encoding full-size ABCGs identified so far appeared to be differentially regulated under various environmental constraints, plant growth regulators, and microbial elicitors, indicating a broad functional role of these proteins in plant responses to abiotic and biotic stress. Nevertheless, the structure and physiological function of full-size ABCGs in many plant species are still unknown. We have recently identified 16 genes encoding full-size ABCG proteins in cucumber and found that the transcripts of two of them, CsABCG36 (CsPDR8) and CsABCG40 (CsPDR12), are most abundant in roots and are significantly affected by phytohormones and auxin herbicide. In this study, we analyzed the structure and phylogeny of all the full-size cucumber ABCG transporters and studied the organ expression profiles of the remaining 14 CsABCG genes. In addition, we investigated the effect of different plant growth regulators and the diterpene sclareolide on CsABCG expression in cucumber roots. Until now, the full-size plant ABCG transporters have been grouped into five different clusters. The new phylogenetic analysis of full-size ABCGs from model plants and cucumber clustered these proteins into six different subgroups. Interestingly, the expression profiles of cucumber ABCG genes assigned to the same clusters were not correlated, suggesting functional diversification or different regulatory mechanisms of the full-size cucumber ABCG proteins.


Sign in / Sign up

Export Citation Format

Share Document