Characterization of Nanoparticles in Seawater for Toxicity Assessment Towards Aquatic Organisms

Author(s):  
M. L. Miglietta ◽  
G. Rametta ◽  
G. Di Francia ◽  
S. Manzo ◽  
A. Rocco ◽  
...  
2021 ◽  
Vol 24 (3) ◽  
pp. 311-322
Author(s):  
Mauludia Mauludia ◽  
Thamrin Usman ◽  
Winda Rahmalia ◽  
Dwi Imam Prayitno ◽  
Siti Nani Nurbaeti

Shrimp is one of the aquatic organisms that contain several active compounds, including astaxanthin. Cincalok is one of the fermented shrimp products containing astaxanthin. This study aims to determine the characteristics of astaxanthin extract from cincalok and its antioxidant activity. Extraction of astaxanthin from cincalok was carried out using the reflux method with acetone : cyclohexane (20:80 v/v) as a solvent. The identification and characterization of astaxanthin was carried out using thin-layer chromatography (TLC), UV-Vis spectrophotometry, and High-Pressure Liquid Chromatography (HPLC). Meanwhile, the antioxidant activity test was carried out using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method in one serial concentration (5; 15; 25 ppm). The results of TLC analysis showed that astaxanthin in cincalok extract has Rf value (0.32). The analysis using a UV-Vis spectrophotometer produced a spectrum with a maximum wavelength of 477 nm, which corresponds to the maximum wavelength of standard astaxanthin. The yield of astaxanthin extract from cincalok in this study was 1.47 mg/100 g wet weight. The chromatogram from the results of UHPLC analysis showed that the retention time of cincalok astaxanthin extract was 6.27 minutes with a purity of 18.03%. The antioxidant activity of cincalok astaxanthin extract was 568.32 ppm. Udang merupakan salah satu organisme air yang mengandung banyak senyawa aktif, termasuk astaxanthin. Cincalok merupakan salah satu produk hasil fermentasi udang yang mengandung astaxanthin. Penelitian ini bertujuan untuk mengetahui karakteristik ekstrak astaxanthin dari cincalok dan aktivitas antioksidannya. Ekstraksi astaxanthin dari cincalok menggunakan metode refluks dengan pelarut aseton:sikloheksan (20:80 v/v). Identifikasi dan karakterisasi astaxanthin dilakukan dengan menggunakan kromatografi lapis tipis (KLT), spektrofotometri UV-Vis, dan High Pressure Liquid Chromatography (HPLC). Sedangkan uji aktivitas antioksidan dilakukan menggunakan metode 1,1-difenil-2-pikrilhidrazil (DPPH) dengan memvariasikan konsentrasi larutan uji, yaitu 5; 15; 25 ppm. Hasil dari penelitian ini melaporkan astaxanthin pada ekstrak cincalok menunjukkan nilai Rf 0,32 pada kromatografi lapis tipis (KLT). Hasil analisis menggunakan spektrofotometer UV-Vis menghasilkan spektra dengan panjang gelombang maksimum 477 nm, yang sesuai dengan panjang gelombang maksimum astaxanthin standar. Randemen ekstrak astaxanthin dari cincalok pada penelitian ini adalah 1,47 mg/100 g berat basah. Kromatogram dari hasil analisis UHPLC menunjukkan waktu retensi ekstrak astaxanthin cincalok yaitu selama 6,27 menit dengan kemurnian sebesar 18,03%. Aktivitas antioksidan dari ekstrak astaxanthin cincalok diperoleh sebesar 568,32 ppm.  


1971 ◽  
Vol 54 (4) ◽  
pp. 801-807
Author(s):  
David L Stalling ◽  
James N Huckins

Abstract The isomer composition of the Aroclor 1200 series was characterized by GLC-MS, using temperature programming and SE-30 support-coated, open-tubular capillary columns. A method is described for the preparation and purification of 36Cl-labeled Aroclors 1248 and 1254. Neutron irradiation of the commercial material was used to prepare the 36Cl-labeled material. Purification of the irradiated product was accomplished by silicic acid column chromatography. Yields of the purified product were between 63 and 99%, with no detectable alteration of the isomer composition; 10% of the 36C1 produced was associated with the unchanged PCB isomers and the remaining radioactivity was contained in polychlorinated terphenyls. The terphenyls were produced by irradiation polymerization, and they were easily separated from the PCB components. Mass spectrometry, utilizing either temperature programmed GLC or direct probe sample introduction, was used to characterize the irradiation products. The radioactive materials are being utilized in experiments to determine uptake and metabolism of PCB by aquatic organisms.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Osama Ennasr ◽  
Christopher Holbrook ◽  
Darryl W. Hondorp ◽  
Charles C. Krueger ◽  
Demetris Coleman ◽  
...  

Abstract Background Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for understanding the relationships between aquatic organisms and their environment, but more information is needed to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or pitch. Results Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than 300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m) when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending (pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no significant effect when moving away from the transmitter. Conclusion Results suggested that much of the observed variation in detection efficiency is related to shielding of the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refinements, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments.


2020 ◽  
Vol 10 (3) ◽  
pp. 248-265
Author(s):  
Monica Joshi ◽  
Bala Prabhakar

Rapid growth of nanotechnology in various fields like medicine, diagnostics, biotechnology, electronics has gifted the world with products having extraordinary benefits. With increasing use of nanotechnology based products, there is a growing concern about toxicity associated with nanoparticles. Nano-size attributes unique properties to the material due to the increased surface area. But toxic effects associated with nanoparticles are also pronounced. Therefore, research in the field of nanotoxicology is of great importance. Some critical properties of nanoparticles such as chemical composition, size, shape, surface properties, purity are determinants of nanotoxicity. Thus, meticulous characterization of nanoparticles prior to toxicity assessment helps in reducing the toxicity by careful designing of nanoparticles. In vitro assessment of nanotoxicity involves testing on cultured cells whereas in vivo testing involves use of animal models like mice, rats, aquatic frogs etc. Use of predictive models like Zebrafish, Drosophila melanogaster for nanotoxicity research is increased in last few decades. Advanced methods for nanotoxicity assessment involve the use of electrochemical methods which can also give insights about mechanism of nanotoxicity. As the literature in this field is dispersed, this review collates various approaches to give a scheme for nanotoxicity evaluation right from the characterization to toxicity assessment.


2018 ◽  
Vol 69 (5) ◽  
pp. 690
Author(s):  
Han Qiu ◽  
Miao Zhang ◽  
Dawei Zou ◽  
Siyuan Song ◽  
Yun Wan ◽  
...  

Aquatic plants are known to accumulate and bioconcentrate metals. In the present study, Elodea canadensis was subjected to different concentrations of yttrium (Y), ranging from 0 to 200μM, for 7 days and analysed for subcellular distribution and molecular localisation of Y, accumulation of mineral nutrients in leaf tissue, changes in photosynthetic pigments, oxidative stress and leaf and organelle ultrastructure. Leaf fractionation by differential centrifugation indicated that 68–76% of Y was accumulated in the cell wall, with higher levels of accumulation in cellulose and pectin than in other biomacromolecules. At all Y concentrations tested, Ca, Mg and Mn levels decreased in E. canadensis, whereas P levels increased; Fe and K levels increased initially and then declined. There was a marked concentration-dependent reduction in photosynthetic pigments following exposure to Y. Responses of components of the antioxidant system to Y treatment varied, whereas there were marked increases in reactive oxygen species and malondialdehyde at all Y concentrations tested. In addition, morphological symptoms of aging, such as chlorosis and damage to chloroplasts and mitochondria, were induced even by the lowest Y concentration. The results reveal that exogenous Y is widely available to this aquatic plant, which may have negative effects on aquatic organisms.


2021 ◽  
Vol 45 (5) ◽  
pp. 2620-2630
Author(s):  
Mohammed F. El-Behairy ◽  
Rasha M. Ahmed ◽  
Marwa A. A. Fayed ◽  
Samar Mowafy ◽  
Inas A. Abdallah

Characterization of the degradation products of pharmaceutical drugs is essential to assess their safety.


2017 ◽  
Vol 91 ◽  
pp. 208-215 ◽  
Author(s):  
Burcu Ertit Taştan ◽  
Turgay Tekinay ◽  
Hatice Sena Çelik ◽  
Caner Özdemir ◽  
Dilara Nur Cakir

Sign in / Sign up

Export Citation Format

Share Document