Nanotoxicity Assessment: A Necessity

2020 ◽  
Vol 10 (3) ◽  
pp. 248-265
Author(s):  
Monica Joshi ◽  
Bala Prabhakar

Rapid growth of nanotechnology in various fields like medicine, diagnostics, biotechnology, electronics has gifted the world with products having extraordinary benefits. With increasing use of nanotechnology based products, there is a growing concern about toxicity associated with nanoparticles. Nano-size attributes unique properties to the material due to the increased surface area. But toxic effects associated with nanoparticles are also pronounced. Therefore, research in the field of nanotoxicology is of great importance. Some critical properties of nanoparticles such as chemical composition, size, shape, surface properties, purity are determinants of nanotoxicity. Thus, meticulous characterization of nanoparticles prior to toxicity assessment helps in reducing the toxicity by careful designing of nanoparticles. In vitro assessment of nanotoxicity involves testing on cultured cells whereas in vivo testing involves use of animal models like mice, rats, aquatic frogs etc. Use of predictive models like Zebrafish, Drosophila melanogaster for nanotoxicity research is increased in last few decades. Advanced methods for nanotoxicity assessment involve the use of electrochemical methods which can also give insights about mechanism of nanotoxicity. As the literature in this field is dispersed, this review collates various approaches to give a scheme for nanotoxicity evaluation right from the characterization to toxicity assessment.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1409-1409
Author(s):  
Zhuo Wang ◽  
Junghun Jung ◽  
Magdalena Kucia ◽  
Junhui Song ◽  
Yusuke Shiozawa ◽  
...  

Abstract We previously developed an in vivo prospective assay for identification of non-cultured cells with MSC potential. Using this assay we identified a population of cells that were slowly cycling and of low density that were capable of multilineage differentiation both in vitro and in vivo (Z. Wang et al, Stem Cells. 2006 24(6):1573). Further characterization of these cells suggested that they resemble a homogenous population of rare Lin−/Sca-1+/CD45− cells that have the morphology and express several markers of undifferentiated embryonic-like stem cells. In vitro the Lin−/Sca-1+/CD45− cells may differentiate into cells from all three germ-layers (M. Kucia et al, Leukemia. 2007 21(2):297). To determine the in vivo fate of this population, we transplanted 500 or 5,000 Lin−/Sca-1+/CD45− cells from a GFP mouse into SCID mice in each group (n=3) immediately after cell sorting to evaluate tissue generation in vivo. At 4 weeks the regenerative potential of these populations was evaluated by micro-CT and histology, and cells were tracked by gross examination of the harvested tissues by fluorescent microscopy. The results showed that a large number of GFP+ cells are located in the implants, indicating that the transplanted cells maintain the ability to contribute to the generation of new tissue. Bone-like tissue was observed in the Lin−/Sca-1+/CD45− group with as low as 500-cells/implant, while 5,000 Lin−/Sca-1+/CD45− cells generated significantly larger mineralized tissue volume, which was confirmed by micro-CT. Lin−/Sca-1+/CD45+ cell only implantation did not form any mineralized tissue, however, while mixed with 2x106 whole bone morrow cells, positive mineralized tissue occurred. Whole bone marrow mixture also improve bone formation in Lin−/Sca-1+/CD45− cell implants compared the actual bone volumes measured by micro-CT. This study demonstrates that non-cultured BM-derived Lin−/Sca-1+/CD45− cells exhibit the capacity to form bone in vivo with as low as 500 cells/implant. Whole bone marrow mixtures can enhance the bone formation, presumably through the interaction of other populations cells. Based on these findings, it is proposed that non-cultured BM-derived Lin−/Sca-1+/CD45− cells are enriched osteogenic cells that can be applied to bone regeneration in vivo.


2004 ◽  
Vol 286 (4) ◽  
pp. C747-C756 ◽  
Author(s):  
Cara J. Gottardi ◽  
Barry M. Gumbiner

Inhibitor of β-catenin and TCF-4 (ICAT) is a 9-kDa polypeptide that inhibits β-catenin nuclear signaling by binding β-catenin and competing its interaction with the transcription factor TCF (T cell factor), but basic characterization of the endogenous protein and degree to which it alters other β-catenin functions is less well understood. At the subcellular level, we show that ICAT localizes to both cytoplasmic and nuclear compartments. In intestinal tissue, ICAT is upregulated in the mature, nondividing enterocyte population lining intestinal villi and is absent in the β-catenin/TCF signaling-active crypt region, suggesting that its protein levels may be inversely related with β-catenin signaling activity. However, ICAT protein levels are not altered by activation or inhibition of Wnt signaling in cultured cells, suggesting that ICAT expression is not a direct target of the Wnt/β-catenin pathway. In cells where β-catenin levels are elevated by Wnt, a fraction of this β-catenin pool is associated with ICAT, suggesting that ICAT may buffer the cell from increased levels of β-catenin. Distinct from TCF and cadherin, ICAT does not protect the soluble pool of β-catenin from degradation by the adenomatous polyposis coli containing “destruction complex.” Although ICAT inhibits β-catenin binding to the cadherin as well as TCF in vitro, stable overexpression of ICAT in Madin-Darby canine kidney (MDCK) epithelial cells shows no obvious alterations in the cadherin complex, suggesting that the ability of ICAT to inhibit β-catenin binding to the cadherin may be restricted in vivo. MDCK cells overexpressing ICAT do, however, exhibit enhanced cell scattering on hepatocyte growth factor treatment, suggesting a possible role in the regulation of dynamic rather than steady-state cell-cell adhesions. These findings confirm ICAT's primary role in β-catenin signaling inhibition and further suggest that ICAT may have consequences for cadherin-based adhesive function in certain circumstances, implying a broader role than previously described.


2020 ◽  
Vol 61 (6) ◽  
pp. 896-910 ◽  
Author(s):  
Eyad Naser ◽  
Stephanie Kadow ◽  
Fabian Schumacher ◽  
Zainelabdeen H. Mohamed ◽  
Christian Kappe ◽  
...  

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM’s catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Carbon ◽  
2016 ◽  
Vol 103 ◽  
pp. 291-298 ◽  
Author(s):  
Valeria Ettorre ◽  
Patrizia De Marco ◽  
Susi Zara ◽  
Vittoria Perrotti ◽  
Antonio Scarano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document