Effect of T Lymphocytes PD-1/B7-H1 Path Expression in Patients with Severe Hepatitis Depression from Promoting Liver Cell Growth Hormone Combinations from Gongying Yinchen Soup

Author(s):  
Zhang Junhui ◽  
Gao Junfeng ◽  
Zhao Xinguo ◽  
Li Meng ◽  
Ma Limin ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangyang Xia ◽  
Quanwei Tao ◽  
Qunchao Ma ◽  
Huiqiang Chen ◽  
Jian’an Wang ◽  
...  

Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues.


1993 ◽  
Vol 15 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Toshiyuki NORIMURA ◽  
Hajime IMADA ◽  
Naoki KUNUGITA ◽  
Naoki YOSHIDA ◽  
Miyuki NIKAIDO

PEDIATRICS ◽  
1968 ◽  
Vol 41 (1) ◽  
pp. 30-46
Author(s):  
Donald B. Cheek

For many years the study of growth has rested mainly on the application of anthropometric techniques and the measurement of height and weight. A few years ago Tanner9 correctly pointed out that studies on body composition were mainly related to body weight and, therefore, added little to the thinking. A more penetrating approach to the study of growth was recommended.2 The present approach,11 documented in part here, has been to apply biochemical and physiological techniques for the measurement of body cell mass, cell size, cell number and, to some extent, cell function. Body function and heat production as well as maturational age have been of concern. These studies have been made in the same children at tile same time. It is anticipated that inspection of these three dimensions of growth, size, function, and maturational age should help to elucidate problems related to growth retardation. In the clinic it is possible to predict cell-extracellular mass of children by applying equations based on relationships between body composition and height and weight. We began by presenting information on growth of muscle and the differences between the sexes with the progress of time and with respect to size and number of cells. Increments in growth rate of the male at adolescence were found. Such differences in cell growth must be related to some extent to the restrictive action of estrogens on cell multiplication in the female and to the stimulating action of androgens in the male. Growth hormone is an important hormone for the multiplication of cells, while insulin is of importance to protein synthesis. Both hormones are needed for growth. Thyroid hormone appears to play a secondary role but is important to protein synthesis especially in early postnatal life. The energy requirement for normal growth is only slightly above the basal state and the visceral cell mass is the most direct standard of reference for heat production. Restriction of nutrition can either retard growth in the size of cells, in the number of cells, or both. Current studies58 show that ingestion of protein and calories incite the secretion of growth hormone and insulin in specific patterns and at appropriate times. Growth hormone has been labelled the "feasting" hormone and insulin tile "feasting" hormone.59 Thus, the subtle relationship between nutrition and cell growth becomes apparent. Of concern is the possibility that overnutrition early in life may program excess secretion of hormones such as insulin or growth hormone. Overnutrition is a major problem in the affluent society, while conservative nutrition is compatible with longevity.6 Hirsch, et al.60 informs us that growth of adipose tissue is mainly by cell number increase–as we have seen for muscle. Again, a steady state of cell number is reached for fat cells. But, obese subjects have an excess of fat cells which do not disappear with time and diet. Such cells become increasingly insensitive to insulin as they enlarge.61 One might view the passing parade of life and growth and observe the relation of the intracellular phase to body weight from infancy to senility (Fig. 12). Here we see the upward increase of cell mass with respect to time and body weight increase. The adult data are taken from F. D. Moore.62 Clearly, with senility we can suspect that more and more of the body weight is extracellular or connective tissue and less and less of the weight is soft tissue or oxidizing protoplasm. Data on body potassium are even more remarkable in this demonstration.11 It is difficult to say with Browning: Grow old along with me! The best is yet to be.... Nevertheless, it is possible that with increased information and research the understanding of these stages of cell growth will be achieved and, no doubt, the departure from the steady state of cell population which occurs at the autumn of our existence– when cancer, and cardiovascular disease supervene–will be understood.63 However, the problems of aging can only be exposed after the physiology of growth is understood.


Thyroid ◽  
1997 ◽  
Vol 7 (4) ◽  
pp. 567-573 ◽  
Author(s):  
YOSHIE GOTO ◽  
MITSUYASU ITOH ◽  
YASUHIRO OHTA ◽  
NORIYOSHI OGAWA ◽  
YOSHINORI GOTO ◽  
...  

2004 ◽  
Vol 61 (4) ◽  
pp. 437-440 ◽  
Author(s):  
Graca Porto ◽  
Eugenia Cruz ◽  
Helena Pessegueiro Miranda ◽  
Beatriz Porto ◽  
Jose Carlos Vasconcelos ◽  
...  

2012 ◽  
Vol 25 (1) ◽  
pp. 87-97 ◽  
Author(s):  
P. Borrione ◽  
L. Grasso ◽  
M. Pautasso ◽  
A. Parisi ◽  
F. Quaranta ◽  
...  

The aim of the present study is to evaluate the effects induced by increasing concentrations of human recombinant growth hormone on T lymphocytes. Ten healthy volunteers and twelve subjects with symptomatic allergies were enrolled in the study. Peripheral blood mononuclear cells and purified T lymphocytes were cultured in the presence of graded concentrations of growth hormone. Following appropriate in vitro stimulations, the proportion of apoptotic T cells, the percentage of activated T lymphocyte subpopulations, the phytohemagglutinin responsiveness and the Th2 response were assessed by flow cytometry analysis. Moreover, in order to evaluate the phosphoinositol-3-kinase signaling pathway involvement, cells were also analyzed after treatment with LY294002. The treatment with different concentrations of growth hormone did not influence the activation pattern of un-stimulated T lymphocytes. On the contrary, growth hormone was able to modify the CD38/HLA-DR co-expression of T cells activated with phytohemoagglutinin. A different response was observed when samples obtained from healthy donors and from subjects with symptomatic allergies were analysed. Moreover, growth hormone treatment was able to increase the Th2 response in the samples obtained from healthy donors only. The results of the present study strongly support the hypothesis that growth hormone administration may play an important role in conditions of impaired/activated immune systems. The observation that growth hormone administration at high doses may reverse its effects and that it may promote a Th2-oriented response have significant clinical implications when considering the use of this hormone for artificially enhancing the physical performances of healthy athletes.


Sign in / Sign up

Export Citation Format

Share Document