Investigation and Analysis on Ear Diameter and Ear Axis Diameter in Maize RIL Population

Author(s):  
Daowen He ◽  
Hongmei Zhang ◽  
Changmin Liao ◽  
Qi Luo ◽  
Guoqiang Hui ◽  
...  
Keyword(s):  
2012 ◽  
Vol 37 (11) ◽  
pp. 1967-1974 ◽  
Author(s):  
Li HUANG ◽  
Xin-Yan ZHAO ◽  
Wen-Hua ZHANG ◽  
Zhi-Ming FAN ◽  
Xiao-Ping REN ◽  
...  

Author(s):  
Rajanikanth Govindarajulu ◽  
Ashley N Hostetler ◽  
Yuguo Xiao ◽  
Srinivasa R Chaluvadi ◽  
Margarita Mauro-Herrera ◽  
...  

Abstract Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.


Euphytica ◽  
2017 ◽  
Vol 213 (2) ◽  
Author(s):  
Yongce Cao ◽  
Shuguang Li ◽  
Xiaohong He ◽  
Fangguo Chang ◽  
Jiejie Kong ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Elise A. R. Serin ◽  
L. B. Snoek ◽  
Harm Nijveen ◽  
Leo A. J. Willems ◽  
Jose M. Jiménez-Gómez ◽  
...  

2020 ◽  
Author(s):  
Ping Lou ◽  
Scott Woody ◽  
Kathleen Greenham ◽  
Robert VanBuren ◽  
Marivi Colle ◽  
...  

ABSTRACTThe globally important crop Brassica rapa, a close relative of Arabidopsis, is an excellent system for modeling our current knowledge of plant growth on a morphologically diverse crop. The long history of B. rapa domestication across Asia and Europe provides a unique collection of locally adapted varieties that span large climatic regions with various abiotic and biotic stress tolerance traits. This diverse gene pool provides a rich source of targets with the potential for manipulation towards the enhancement of productivity of crops both within and outside the Brassicaceae. To expand the genetic resources available to study natural variation in B. rapa, we constructed an Advanced Intercross Recombinant Inbred (AI-RIL) population using B. rapa subsp. trilocularis (Yellow Sarson) R500 and the B. rapa subsp. parachinensis (Cai Xin) variety L58. Our current understanding of genomic structure variation across crops suggests that a single reference genome is insufficient for capturing the genetic diversity within a species. To complement this AI-RIL population and current and future B. rapa genomic resources, we generated a de novo genome assembly of the B. rapa subsp. trilocularis (Yellow Sarson) variety R500, the maternal parent of the AI-RIL population. The genetic map for the R500 x L58 population generated using this de novo genome was used to map QTL for seed coat color and revealed the improved mapping resolution afforded by this new assembly.


2021 ◽  
Author(s):  
Kyu Jin Sa ◽  
Ik-Young Choi ◽  
Jong Yeol Park ◽  
Jae‑Keun Choi ◽  
Si‑Hwan Ryu ◽  
...  

2020 ◽  
Vol 18 (4) ◽  
pp. 251-258
Author(s):  
Stanley Adobor ◽  
Rajib Podder ◽  
Sabine Banniza ◽  
Albert Vandenberg

AbstractCultivated lentil suffers yield loss from stemphylium blight, caused by Stemphylium botryosum Wallr. Identification of sources of stemphylium blight resistance and knowledge of the mode of inheritance of resistance are important for developing resistant cultivars. The interspecific recombinant inbred line (RIL) population developed from a cross between the moderately resistant parent Lens culinaris cv. ‘Eston’ and the resistant parent L. ervoides (Brign.) Grande accession IG 72815 was evaluated for stemphylium blight resistance under controlled conditions at the University of Saskatchewan, Saskatoon, Canada, and under field conditions at the Pulses Research Centre (PRC), Ishurdi, Bangladesh. We hypothesized that resistance from both parents will lead to transgressive segregation indicative of pyramiding of resistance genes from the same. However, no resistant transgressive segregants were observed in the RIL population. A large proportion (50%) of the RILs had disease severity levels similar to the resistant parent IG 72815 in experiments conducted under natural disease pressure in Bangladesh. Under controlled conditions in Saskatoon, 38% of RILs had resistance levels similar to IG 72815. Across all environments, 14 RILs consistently had resistance levels similar to IG 72815. The distribution of disease severity scores for all RILs indicated polygenic inheritance of stemphylium blight resistance in the population. RILs with consistent resistant reactions should prove useful for lentil improvement programmes. This will contribute to increasing the productivity of lentil crops in North America and the Indo-Gangetic region, which account for more than 68% of world lentil production.


Sign in / Sign up

Export Citation Format

Share Document