Influence of the Soil Properties on the Physico-Chemical Behaviour of Cd, Zn, Cu and Pb in Polluted Soils

1986 ◽  
pp. 129-131
Author(s):  
P. O. Scokart ◽  
K. Meeus-Verdinne
Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Meghdad Jourgholami ◽  
Azadeh Khoramizadeh ◽  
Angela Lo Monaco ◽  
Rachele Venanzi ◽  
Francesco Latterini ◽  
...  

Engineering applications can be used to mitigate the adverse effects of soil compaction and amend compacted soils. Previous literature has highlighted the beneficial effects of interventions such as litter mulching and incorporation on skid trails. However, little is known about the effectiveness of these alternatives in restoring forest soil quality after forest logging. The objective of this study was to properly elucidate the effects of the above mentioned soil protection methods, litter incorporation before skidding (LI) and litter mulching after skidding (LM), on the recovery of compacted soil’s physico-chemical and biological properties on skid trails over a 2-year period in the Hyrcanian forests of Iran to identify the best option for restoration intervention. The litter used in both methods consisted of dried leaves of the hornbeam and maple tree in three intensities of 3, 6, and 9 Mg ha−1. The results showed that the application of both methods (LI and LM) significantly improved the soil properties when compared to the untreated skid trail. Results showed that the recovery values of soil properties in the LI treatments were significantly higher than those of the LM. The recovery values of soil properties by 6 and 9 Mg ha−1 were significantly higher than those of 3 Mg ha−1, while the differences were not significant between 6 and 9 Mg ha−1. Our findings showed that soil properties were partially recovered (70–80%) over a 2-year period from treatment, compared to untreated, but the full recovery of soil properties required more time to return to the pre-harvest value. Overall, the results of this study demonstrated that the application of soil protection methods accelerates the process of recovering soil properties much faster than natural soil recovery, which can take more than 20 years in these forests.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liqiang Cui ◽  
Qinya Fan ◽  
Jianxiong Sun ◽  
Guixiang Quan ◽  
Jinlong Yan ◽  
...  

AbstractFenton-like system formed in a natural soil environment deemed to be significant in the aging process of biochar. Aged biochars have distinct physico-chemical and surface properties compared to non-aged biochar. The aged biochar proved to be useful soil amendment due to its improved elements contents and surface properties. The biochar aging process resulted in increased surface area and pore volume, as well as carbon and oxygen-containing functional groups (such as C=O, –COOH, O–C=O etc.) on its surface, which were also associated with the adsorption behavior of 2,4,6-trichlorophenol (2,4,6-TCP). The biochar aging increased the adsorption capacity of 2,4,6-TCP, which was maximum at pH 3.0. The 2,4,6-TCP adsorption capacity of aged-bush biochar (ABB) and aged-peanut shell biochar (APB) was increased by 1.0–11.0% and 7.4–38.8%, respectively compared with bush biochar (BB) and peanut shell biochar (PB) at the same initial concentration of 2,4,6-TCP. All biochars had similar 2,4,6-TCP desorption rates ranging from 33.2 to 73.3% at different sorption temperatures and times. The desorbed components were mainly 2,4,6-TCP and other degraded components, which were low in concentration with small molecule substance. The results indicated that the aged-biochar could be effective for the long-term remediation of naturally organic polluted soils.


2006 ◽  
Vol 180 (1-2) ◽  
pp. 213-217
Author(s):  
N. Sefiani ◽  
M. Azzi ◽  
N. Saib ◽  
M. Hlaibi ◽  
T.M. Ouazzani ◽  
...  

1970 ◽  
Vol 19 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Mohammad Zabed Hossain ◽  
Mihir Lal Saha ◽  
Chaman Binta Aziz ◽  
Sirajul Hoque

This study examined the effect of deforestation on the soil properties (physico-chemical and bacterial) of the Sal (Shorea robusta Roxb. Ex Gaertn.) forests in Bangladesh. Physico-chemical properties and the bacterial colony counts of soil were studied by comparing a natural Sal forest site with deforested and planted with Menjium site, deforested and planted with Mahogoni site, as well as deforested but not planted but covered with profuse growth of Axonopus compressus grass species site. Moisture content was significantly lower in the deforested and planted with Menjium site and deforested and planted with Mahogoni site than the natural forest site and the deforested but not planted site. Total organic carbon, total nitrogen and available nitrogen contents were significantly lower in the natural forest site. Significantly higher number of bacterial colony and higher organic carbon and moisture contents were found in the deforested but not planted site indicating that both organic carbon and moisture content were important for microbial growth. The present study clearly showed that deforestation significantly altered the soil physico-chemical and bacterial communities of the Sal forests. It was also revealed that plantation with different exotic plants were found to be different in influencing soil properties. Key words: Bacterial colony; Deforestation effects; Sal forest; Soil physico-chemical properties DOI: http://dx.doi.org/10.3329/dujbs.v19i1.8945 DUJBS 2010; 19(1): 63-72


2013 ◽  
Vol 59 (No. 8) ◽  
pp. 372-377 ◽  
Author(s):  
W. Szulc ◽  
B. Rutkowska

The determination of a range of boron concentration in the soil solution, evaluation of the effect of physico-chemical soil properties on boron concentration in the soil solution as well verification whether boron quantity in the soil solution is sufficient for nutritional needs of selected plants cultivated in Poland were comprised. Average boron concentration in the soil solution of Poland&rsquo;s cultivated soils ranges from 0.59 to 5.07 &micro;mol/L and is differentiated by physico-chemical properties of soil. Taking into account decreasing effects of soil properties on the increase of boron concentration in the soil solution, the soil properties can be arranged as follows: organic C &gt;<br />soil abundance in available boron &gt; soil texture &gt; soil pH. The minimum boron quantity observed in the soil solution of Poland&rsquo;s cultivated soils was not sufficient to fulfil nutritional needs of the plants. The maximum boron quantity observed secured nutritional needs of cereals and potatoes but not those of rape plants and sugar beets. Based on the study it can be concluded that the measurement of the concentration of boron in the soil solution can be used in the diagnosis of deficiency of this element for crops.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


Sign in / Sign up

Export Citation Format

Share Document