Ozone Measurement from a Balloon Payload Using a New Fast-Response UV-Absorption Photometer

1985 ◽  
pp. 470-474
Author(s):  
Michael H. Proffitt
Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
David Tarasick ◽  
Ian E. Galbally ◽  
Owen R. Cooper ◽  
Martin G. Schultz ◽  
Gerard Ancellet ◽  
...  

From the earliest observations of ozone in the lower atmosphere in the 19th century, both measurement methods and the portion of the globe observed have evolved and changed. These methods have different uncertainties and biases, and the data records differ with respect to coverage (space and time), information content, and representativeness. In this study, various ozone measurement methods and ozone datasets are reviewed and selected for inclusion in the historical record of background ozone levels, based on relationship of the measurement technique to the modern UV absorption standard, absence of interfering pollutants, representativeness of the well-mixed boundary layer and expert judgement of their credibility. There are significant uncertainties with the 19th and early 20th-century measurements related to interference of other gases. Spectroscopic methods applied before 1960 have likely underestimated ozone by as much as 11% at the surface and by about 24% in the free troposphere, due to the use of differing ozone absorption coefficients. There is no unambiguous evidence in the measurement record back to 1896 that typical mid-latitude background surface ozone values were below about 20 nmol mol–1, but there is robust evidence for increases in the temperate and polar regions of the northern hemisphere of 30–70%, with large uncertainty, between the period of historic observations, 1896–1975, and the modern period (1990–2014). Independent historical observations from balloons and aircraft indicate similar changes in the free troposphere. Changes in the southern hemisphere are much less. Regional representativeness of the available observations remains a potential source of large errors, which are difficult to quantify. The great majority of validation and intercomparison studies of free tropospheric ozone measurement methods use ECC ozonesondes as reference. Compared to UV-absorption measurements they show a modest (~1–5% ±5%) high bias in the troposphere, but no evidence of a change with time. Umkehr, lidar, and FTIR methods all show modest low biases relative to ECCs, and so, using ECC sondes as a transfer standard, all appear to agree to within one standard deviation with the modern UV-absorption standard. Other sonde types show an increase of 5–20% in sensitivity to tropospheric ozone from 1970–1995. Biases and standard deviations of satellite retrieval comparisons are often 2–3 times larger than those of other free tropospheric measurements. The lack of information on temporal changes of bias for satellite measurements of tropospheric ozone is an area of concern for long-term trend studies.


1997 ◽  
Vol 102 (D11) ◽  
pp. 13135-13140 ◽  
Author(s):  
William L. Grose ◽  
Gretchen S. Lingenfelser ◽  
James M. Russell ◽  
R. Bradley Pierce ◽  
T. Duncan Fairlie ◽  
...  

1983 ◽  
Vol 54 (12) ◽  
pp. 1719-1728 ◽  
Author(s):  
Michael H. Proffitt ◽  
Richard J. McLaughlin

Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2020 ◽  
Author(s):  
SMITA GAJANAN NAIK ◽  
Mohammad Hussain Kasim Rabinal

Electrical memory switching effect has received a great interest to develop emerging memory technology such as memristors. The high density, fast response, multi-bit storage and low power consumption are their...


Author(s):  
Supason Pattanaargson ◽  
Nantawan Hongchinnagorn ◽  
Piyawan Hirunsupachot ◽  
Yongsak Sritana-anant
Keyword(s):  

2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


Sign in / Sign up

Export Citation Format

Share Document