Astrophysical Jets: Optical Morphologies of Radio Jets and their Parent Galaxies

Author(s):  
Jean-Luc Nieto
1990 ◽  
Vol 140 ◽  
pp. 403-412
Author(s):  
David A. Clarke

Significant progress has been made in comparing numerical simulations with radio images of astrophysical jets. One is no longer forced to compare density slices through an axisymmetric jet simulation with observed Stokes I images. With the advent of MHD codes and modern supercomputers, models can now be constrained by all four Stokes parameters. In this paper, recent efforts to simulate synchrotron emission images of extragalactic radio jets are reviewed.


1985 ◽  
Vol 107 ◽  
pp. 425-431
Author(s):  
David Eichler

A striking feature of extragalactic radio jets is that they are so narrow. Theories of collimation should account for opening angles of order 1° or less (as opposed to those of laboratory jets which become turbulent and typically open up to more than 10°). This makes instabilities particularly troublesome for theories of collimation in which they are present. While instabilities might not entirely destroy the general bipolar nature of the flow, they decollimate it by definition.


1996 ◽  
Vol 175 ◽  
pp. 71-72
Author(s):  
F. Mantovani ◽  
W. Junor ◽  
M. Bondi ◽  
L. Padrielli ◽  
W. Cotton ◽  
...  

Recently we focussed our attention on a sample of Compact Steep-spectrum Sources (CSSs) selected because of the large bent radio jets seen in the inner region of emission. The largest distortions are often seen in sources dominated by jets, and there are suggestions that this might to some extent be due to projection effects. However, superluminal motion is rare in CSSs. The only case we know of so far is 3C147 (Alef at al. 1990) with a mildly superluminal speed of ≃ 1.3v/c. Moreover, the core fractional luminosity in CSSs is ≃ 3% and ≤ 0.4% for quasars and radio galaxies respectively. Similar values are found for large size radio sources i.e. both boosting and orientations in the sky are similar for the two classes of objects. An alternative possibility is that these bent-jet sources might also be brightened by interactions with the ambient media. There are clear indications that intrinsic distortions due to interactions with a dense inhomogeneous gaseous environment play an important role. Observational support comes from the large RMs found in CSSs (Taylor et al. 1992; Mantovani et al. 1994; Junor et al. these proc.) and often associated with strong depolarization (Garrington & Akujor, t.p.). The CSSs also have very luminous Narrow Line Regions emission, with exceptional velocity structure (Gelderman, t.p.).


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2021 ◽  
Author(s):  
Michael Janssen ◽  
Heino Falcke ◽  
Matthias Kadler ◽  
Eduardo Ros ◽  
Maciek Wielgus ◽  
...  

AbstractVery-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.


2019 ◽  
Vol 488 (4) ◽  
pp. 5713-5727
Author(s):  
Kuldeep Singh ◽  
Indranil Chattopadhyay

ABSTRACT We study relativistic magnetized outflows using relativistic equation of state having variable adiabatic index (Γ) and composition parameter (ξ). We study the outflow in special relativistic magnetohydrodynamic regime, from sub-Alfvénic to super-fast domain. We showed that, after the solution crosses the fast point, magnetic field collimates the flow and may form a collimation-shock due to magnetic field pinching/squeezing. Such fast, collimated outflows may be considered as astrophysical jets. Depending on parameters, the terminal Lorentz factors of an electron–proton outflow can comfortably exceed few tens. We showed that due to the transfer of angular momentum from the field to the matter, the azimuthal velocity of the outflow may flip sign. We also study the effect of composition (ξ) on such magnetized outflows. We showed that relativistic outflows are affected by the location of the Alfvén point, the polar angle at the Alfvén point and also the angle subtended by the field lines with the equatorial plane, but also on the composition of the flow. The pair dominated flow experiences impressive acceleration and is hotter than electron–proton flow.


Sign in / Sign up

Export Citation Format

Share Document