Chemical Evolution of the Light Elements and the Big Bang Nucleosynthesis

Author(s):  
C. Gry ◽  
G. Malinie ◽  
J. Audouze ◽  
A. Vidal-Madjar
2021 ◽  
Vol 502 (2) ◽  
pp. 2474-2481
Author(s):  
Cyril Pitrou ◽  
Alain Coc ◽  
Jean-Philippe Uzan ◽  
Elisabeth Vangioni

ABSTRACT Recent measurements of the D(p,γ)3He nuclear reaction cross-section and of the neutron lifetime, along with the reevaluation of the cosmological baryon abundance from cosmic microwave background (CMB) analysis, call for an update of abundance predictions for light elements produced during the big-bang nucleosynthesis (BBN). While considered as a pillar of the hot big-bang model in its early days, BBN constraining power mostly rests on deuterium abundance. We point out a new ≃1.8σ tension on the baryonic density, or equivalently on the D/H abundance, between the value inferred on one hand from the analysis of the primordial abundances of light elements and, on the other hand, from the combination of CMB and baryonic oscillation data. This draws the attention on this sector of the theory and gives us the opportunity to reevaluate the status of BBN in the context of precision cosmology. Finally, this paper presents an upgrade of the BBN code primat.


2021 ◽  
Vol 9 ◽  
Author(s):  
Soumya Ranjan Dash ◽  
Tamal Das ◽  
Kumar Vanka

At the dawn of the Universe, the ions of the light elements produced in the Big Bang nucleosynthesis recombined with each other. In our present study, we have tried to mimic the conditions in the early Universe to show how the recombination process would have led to the formation of the first ever formed diatomic species of the Universe: HeH+, as well as the subsequent processes that would have led to the formation of the simplest triatomic species: H3+. We have also studied some special cases: higher positive charge with fewer number of hydrogen atoms in a dense atmosphere, and the formation of unusual and interesting linear, dicationic He chains beginning from light elements He and H in a positively charged atmosphere. For all the simulations, the ab initio nanoreactor (AINR) dynamics method has been employed.


1991 ◽  
Vol 145 ◽  
pp. 3-12
Author(s):  
Hubert Reeves

In the first part of this paper, a review is given of the situation of the Big Bang nucleosynthesis of the nuclides D, 3He, 4He and 7Li, taking into account the latest experimental data (number of neutrino species, lifetime of the neutron) and theoretical developments (quark-hadron phase transition). In the second part. I review the process of Galactic Cosmic Ray formation of lithium, beryllium and boron throughout the life of the galaxy, taking advantage of recent measurements of Be and Li in iron deficient stars.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050012
Author(s):  
Tae-Sun Park ◽  
Kyung Joo Min ◽  
Seung-Woo Hong

The effects of introducing a small amount of nonthermal distribution (NTD) of elements in big bang nucleosynthesis (BBN) are studied by allowing a fraction of the NTD to be time-dependent so that it contributes only during a certain period of the BBN evolution. The fraction is modeled as a Gaussian-shaped function of [Formula: see text], where [Formula: see text] is the temperature of the cosmos, and thus the function is specified by three parameters; the central temporal position, the width and the magnitude. The change in the average nuclear reaction rates due to the presence of the NTD is assumed to be proportional to the Maxwellian reaction rates but with temperature [Formula: see text], [Formula: see text] being another parameter of our model. By scanning a wide four-dimensional parametric space at about half a million points, we have found about 130 points with [Formula: see text], at which the predicted primordial abundances of light elements are consistent with the observations. The magnitude parameter [Formula: see text] of these points turns out to be scattered over a very wide range from [Formula: see text] to [Formula: see text], and the [Formula: see text]-parameter is found to be strongly correlated with the magnitude parameter [Formula: see text]. The temperature region with [Formula: see text] or the temporal region [Formula: see text][Formula: see text]s seems to play a central role in lowering [Formula: see text].


2009 ◽  
Vol 5 (S268) ◽  
pp. 201-210
Author(s):  
Monique Spite ◽  
François Spite

AbstractThe nuclei of the lithium isotopes are fragile, easily destroyed, so that, at variance with most of the other elements, they cannot be formed in stars through steady hydrostatic nucleosynthesis.The 7Li isotope is synthesized during primordial nucleosynthesis in the first minutes after the Big Bang and later by cosmic rays, by novae and in pulsations of AGB stars (possibly also by the ν process). 6Li is mainly formed by cosmic rays. The oldest (most metal-deficient) warm galactic stars should retain the signature of these processes if, (as it had been often expected) lithium is not depleted in these stars. The existence of a “plateau” of the abundance of 7Li (and of its slope) in the warm metal-poor stars is discussed. At very low metallicity ([Fe/H] < −2.7dex) the star to star scatter increases significantly towards low Li abundances. The highest value of the lithium abundance in the early stellar matter of the Galaxy (logϵ(Li) = A(7Li) = 2.2 dex) is much lower than the the value (logϵ(Li) = 2.72) predicted by the standard Big Bang nucleosynthesis, according to the specifications found by the satellite WMAP. After gathering a homogeneous stellar sample, and analysing its behaviour, possible explanations of the disagreement between Big Bang and stellar abundances are discussed (including early astration and diffusion). On the other hand, possibilities of lower productions of 7Li in the standard and/or non-standard Big Bang nucleosyntheses are briefly evoked.A surprisingly high value (A(6Li)=0.8 dex) of the abundance of the 6Li isotope has been found in a few warm metal-poor stars. Such a high abundance of 6Li independent of the mean metallicity in the early Galaxy cannot be easily explained. But are we really observing 6Li?


2019 ◽  
Vol 28 (11) ◽  
pp. 1950138
Author(s):  
Kevin F. S. Pardede ◽  
Agus Suroso ◽  
Freddy P. Zen

A five-dimensional braneworld cosmological model in general scalar–tensor action that is comprised of various Horndeski Lagrangians is considered. The Friedmann equations in the case of strongly and weakly coupled [Formula: see text] Horndeski Lagrangians have been obtained. The strongly coupled [Formula: see text] model produces the Cardassian term [Formula: see text] with [Formula: see text], which can serve as an alternative explanation for the accelerated expansion phase of the universe. Furthermore, the latest combined observational facts from BAO, CMB, SNIa, [Formula: see text] and [Formula: see text] value observation suggest that the [Formula: see text] term lies quite close to the constrained value. On the other hand, the weakly coupled [Formula: see text] case has several new correction terms which are omitted in the braneworld Einstein–Hilbert model, e.g. the cubic [Formula: see text] and the dark radiation–matter interaction term [Formula: see text]. Furthermore, this model provides a cosmological constant constructed from the bulk scalar field, requires no brane tension and supports the big bang nucleosynthesis (BBN) constraint naturally.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950065 ◽  
Author(s):  
Tahani R. Makki ◽  
Mounib F. El Eid ◽  
Grant J. Mathews

The light elements and their isotopes were produced during standard big bang nucleosynthesis (SBBN) during the first minutes after the creation of the universe. Comparing the calculated abundances of these light species with observed abundances, it appears that all species match very well except for lithium (7Li) which is overproduced by the SBBN. This discrepancy is rather challenging for several reasons to be considered on astrophysical and on nuclear physics ground, or by invoking nonstandard assumptions which are the focus of this paper. In particular, we consider a variation of the chemical potentials of the neutrinos and their temperature. In addition, we investigated the effect of dark matter on 7Li production. We argue that including nonstandard assumptions can lead to a significant reduction of the 7Li abundance compared to that of SBBN. This aspect of lithium production in the early universe may help to resolve the outstanding cosmological lithium problem.


2017 ◽  
Vol 26 (08) ◽  
pp. 1741003 ◽  
Author(s):  
Riou Nakamura ◽  
Masa-Aki Hashimoto ◽  
Ryotaro Ichimasa ◽  
Kenzo Arai

We review the recent progress in the Big-Bang nucleosynthesis which includes the standard and nonstandard theory of cosmology, effects of neutrino degeneracy, and inhomogeneous nucleosynthesis within the framework of a Friedmann model. As for a nonstandard theory of gravitation, we adopt a Brans–Dicke theory which incorporates a cosmological constant. We constrain various parameters associated with each subject.


Sign in / Sign up

Export Citation Format

Share Document